超分辨重建——SRGAN网络训练自己数据集与推理测试(详细图文教程)

本文主要是介绍超分辨重建——SRGAN网络训练自己数据集与推理测试(详细图文教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《暗光增强》
📝《模型优化》
📝《模型实战部署》

😊总结不易,多多支持呀🌹感谢您的点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖


在这里插入图片描述

目录

  • 一、SRGAN网络
    • 1.1 标题
    • 1.2 作者
    • 1.3 发表时间
    • 1.4 摘要
    • 1.5 主要内容
      • 1.5.1 生成对抗网络架构
      • 1.5.2 损失函数
      • 1.5.3 实验结果
    • 1.6 论文总结
  • 二、源码包准备
  • 三、环境准备
    • 3.1 报错:AttributeError: module 'torch' has no attribute 'compile'
    • 3.2 报错:RuntimeError: Windows not yet supported for torch.compile
  • 四、数据集准备
  • 五、训练
    • 5.1 预训练权重下载
    • 5.2 配置文件参数修改
    • 5.3 启动训练
    • 5.4 实时可视化训练过程损失函数走势
    • 5.5 训练结果
  • 六、测试
    • 6.1 测试配置文件修改
    • 6.2 启动测试
  • 七、推理速度
    • 7.1 GPU
    • 7.2 CPU
  • 八、超分效果展示
  • 九、总结

一、SRGAN网络

1.1 标题

“Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”

1.2 作者

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi

1.3 发表时间

2017年

1.4 摘要

SRGAN通过利用生成对抗网络(GAN)来实现单图像超分辨率重建。传统的方法如基于均方误差(MSE)的优化通常会导致图像平滑且缺乏细节,而SRGAN通过引入感知损失函数(perceptual loss),使得重建的图像不仅在像素级别上更接近高分辨率图像,而且在感知质量上也更加接近真实图像。

1.5 主要内容

1.5.1 生成对抗网络架构

生成器(Generator):采用残差网络(ResNet)结构,能够有效地学习从低分辨率图像到高分辨率图像的映射。
判别器(Discriminator):判别器的任务是区分生成的高分辨率图像和真实的高分辨率图像。通过对抗训练,生成器能够学习生成更加逼真的图像。

1.5.2 损失函数

内容损失(Content Loss):利用VGG网络提取的特征来计算生成图像和真实图像之间的差异。
对抗损失(Adversarial Loss):来自GAN的对抗训练,使得生成器能够骗过判别器,从而生成更加逼真的图像。
感知损失(Perceptual Loss):

感知损失结合内容损失和对抗损失,旨在提高重建图像的感知质量,使其在视觉上更接近真实图像。

1.5.3 实验结果

SRGAN在多种数据集上进行了测试,结果表明,与传统方法(如基于MSE的方法)相比,SRGAN生成的图像在感知质量上有显著提升。在用户研究中,SRGAN生成的图像被评为更接近真实图像。

1.6 论文总结

SRGAN通过生成对抗网络和感知损失函数的结合,显著提升了单图像超分辨率重建的效果。该方法不仅在像素级别上达到了更高的精度,同时在视觉感知上也大幅提升,生成的图像更加逼真,细节更加丰富。

二、源码包准备

本配套教程源码包中已经下载好了测试模型和预训练模型,部分训练集和测试集。源码包获取方法文章末扫码到公众号「视觉研坊」中回复关键字:超分辨率重建SRGAN。获取下载链接。

Pytorch版的官网源码包地址:SRGAN

论文地址:论文

三、环境准备

下面是我自己训练和测试的环境,仅供参考,其它版本也行。

在这里插入图片描述

3.1 报错:AttributeError: module ‘torch’ has no attribute ‘compile’

该报错是因为yTorch 版本不支持 torch.compile 方法。这种方法是在 PyTorch 2.0 版本中引入的,而我使用的Pytorch为1.12版本

在windows电脑上我安装了2.0.1版Pytorch,继续报错。

3.2 报错:RuntimeError: Windows not yet supported for torch.compile

安装了2.0.1版本Pytorch,见下:

在这里插入图片描述

报错见下:

在这里插入图片描述

报错原因:在 PyTorch 2.0 中,torch.compile 目前不支持在 Windows 上运行。

解决办法:网络训练过程不加速,把compile关闭,具体见下:

在这里插入图片描述

关闭后,后续训练和测试,我继续在之前Pytotch1.12.1版本上操作。

解决该问题还有中方式使用 torch.jit.trace 替代torch.compile,后续没调试。

四、数据集准备

直接运行代码会自动下载数据集,某些情况下会下载中断,而且很慢,可以把数据集下载链接拷贝到迅雷中,速度较快,找数据集链接的方法见下,原论文中的数据集下载链接为:https://huggingface.co/datasets/goodfellowliu/SRGAN_ImageNet/resolve/main/SRGAN_ImageNet.zip

在这里插入图片描述

数据集下载好后,先通过split_images.py脚本将各种分辨率的图像裁剪为统一尺寸图片并保存到指定路径中。关于split_images.py脚本的具体用法,以及数据集的样子参考另外一篇博文:高分辨率图像分割成大小均匀图像

测试集的路径见下:

在这里插入图片描述

五、训练

源码中有net网络和gan网络,我主要讲解gan网络的训练和测试,net网络的训练和测试类同。源码中有2倍,4倍,8倍超分,本教程主要讲解4倍超分,其它超分类同。

5.1 预训练权重下载

直接运行脚本,代码也会自动下载预训练模型,如果自动下载出了问题,去下面文件中找到预训练模型下载链接:

在这里插入图片描述

自己下载的模型权重文件,存放到results\pretrained_models路径中:

在这里插入图片描述

5.2 配置文件参数修改

下面是常用参数,其它参数学生根据自己情况自行修改。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.3 启动训练

gan网络训练的主脚本为train_gan.py,在此脚本中修改训练用的配置文件路径,见下:

在这里插入图片描述
直接运行train_gan.py脚本开始训练:

在这里插入图片描述

部分训练过程见下:

在这里插入图片描述

5.4 实时可视化训练过程损失函数走势

在终端使用下面命令启动tensorboard实时可视化训练过程损失函数走势:

tensorboard --logdir=samples/logs/SRGAN_x4-SRGAN_ImageNet --port 6007

在这里插入图片描述

具体的可视化走势图见下:

在这里插入图片描述

5.5 训练结果

训练过程的模型权重文件自动保存到results\SRGAN_x4-SRGAN_ImageNet路径下:

在这里插入图片描述

训练过程中每一轮的模型权重文件保存到samples\SRGAN_x4-SRGAN_ImageNet路径下:

在这里插入图片描述

六、测试

6.1 测试配置文件修改

下面参数学者根据自己情况调整修改。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6.2 启动测试

在这里插入图片描述

将上面required设置为False后,直接运行test.py脚本:

在这里插入图片描述

输出的评价指标如下:

在这里插入图片描述

测试结果保存到result_images\SRGAN_x4-SRGAN_ImageNet-Set14路径下:

在这里插入图片描述

七、推理速度

7.1 GPU

GPU测试环境:Nvidia GeForce RTX 3050。

120*90图像超分4倍 GPU平均推理时间:7.69ms/fps。

在这里插入图片描述

7.2 CPU

12th Gen Intel® Core™ i7-12700H 2.30 GHz。

下面是120*90图像超分4倍,CPU平均推理时间:302.31ms/fps。

在这里插入图片描述

八、超分效果展示

下面左图为bicubic上采样4倍,中间为原图,右图为SRGAN网络超分4倍结果图。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

九、总结

以上就是超分辨重建SRGAN网络训练自己数据集与推理测试详细过程,超分效果与我超分专栏里的其他网络做对比。

感谢您阅读到最后!关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

这篇关于超分辨重建——SRGAN网络训练自己数据集与推理测试(详细图文教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028107

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

python依赖管理工具UV的安装和使用教程

《python依赖管理工具UV的安装和使用教程》UV是一个用Rust编写的Python包安装和依赖管理工具,比传统工具(如pip)有着更快、更高效的体验,:本文主要介绍python依赖管理工具UV... 目录前言一、命令安装uv二、手动编译安装2.1在archlinux安装uv的依赖工具2.2从github

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别