LSUN数据集(Large-Scale Scene Understanding)

2024-06-03 17:52

本文主要是介绍LSUN数据集(Large-Scale Scene Understanding),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LSUN数据集(Large-Scale Scene Understanding)是一个专为计算机视觉研究设计的大规模场景理解数据集。以下是对LSUN数据集的详细介绍:

  1. 创建与目的:
  • LSUN数据集由斯坦福大学计算机视觉实验室创建,旨在为大规模场景理解问题提供数据支持。
  • 该数据集的设计初衷是为了满足深度学习和计算机视觉研究对大规模、多样性图像数据的需求,以训练出更准确、更强大的视觉模型。

  1. 数据规模与类别:
  • LSUN数据集包含了数百万张高分辨率图像,具体数量可能因不同版本或更新而有所变化,但通常包含超过数百万张的图像数据。
  • 这些图像涵盖了多个场景类别,如卧室、客厅、厨房、街道、教室等,使得研究者可以在不同场景下进行图像理解的研究。

  1. 图像特点与标注信息:
  • LSUN数据集中的图像均为高分辨率,能够捕捉到更多的细节信息,有助于模型进行更精确的场景理解。
  • 数据集中的每个图像都有相关的标注信息,如场景类别、图像坐标、对象边界框等。这些标注信息对于训练模型和评估算法性能至关重要。

  1. 数据格式与存储:
  • LSUN数据集中的图像通常以LMDB格式存储,这是一种高效的键值存储数据库格式,适用于大规模图像数据的存储和检索。
  • 数据库文件通常会被压缩,以节省存储空间并方便网络传输。

  1. 获取与使用:
  • LSUN数据集可以通过斯坦福大学计算机视觉实验室的官方网站进行下载。用户需要注册账号并登录后,方可获取下载链接。
  • 下载完成后,用户需要解压缩数据集文件,并根据自己的需求进行数据集的划分和预处理。
  • 使用深度学习框架(如PyTorch或TensorFlow)时,用户可以按照框架的API文档读取训练图像和标签,进行模型的训练和测试。

请注意,由于LSUN数据集规模庞大且涉及高分辨率图像,下载和使用时可能需要较高的硬件配置和网络带宽。此外,用户在使用LSUN数据集时应遵守相关的使用条款和隐私政策。

附上下载代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-from __future__ import print_function, division
import argparse
import json
from os.path import joinimport subprocess
import urllib2__author__ = 'Fisher Yu'
__email__ = 'fy@cs.princeton.edu'
__license__ = 'MIT'def list_categories(tag):
    url = 'http://lsun.cs.princeton.edu/htbin/list.cgi?tag=' + tag
    f = urllib2.urlopen(url)return json.loads(f.read())def download(out_dir, category, set_name, tag):
    url = 'http://lsun.cs.princeton.edu/htbin/download.cgi?tag={tag}' \'&category={category}&set={set_name}'.format(**locals())if set_name == 'test':
        out_name = 'test_lmdb.zip'else:
        out_name = '{category}_{set_name}_lmdb.zip'.format(**locals())
    out_path = join(out_dir, out_name)
    cmd = ['curl', url, '-o', out_path]print('Downloading', category, set_name, 'set')
    subprocess.call(cmd)def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--tag', type=str, default='latest')
    parser.add_argument('-o', '--out_dir', default='')
    parser.add_argument('-c', '--category', default=None)
    args = parser.parse_args()    categories = list_categories(args.tag)if args.category is None:print('Downloading', len(categories), 'categories')for category in categories:
            download(args.out_dir, category, 'train', args.tag)
            download(args.out_dir, category, 'val', args.tag)
        download(args.out_dir, '', 'test', args.tag)else:if args.category == 'test':
            download(args.out_dir, '', 'test', args.tag)elif args.category not in categories:print('Error:', args.category, "doesn't exist in",
                  args.tag, 'LSUN release')else:
            download(args.out_dir, args.category, 'train', args.tag)
            download(args.out_dir, args.category, 'val', args.tag)if __name__ == '__main__':
    main()

自己也在网上找了一下数据集真的很难也不知道对不对

这篇关于LSUN数据集(Large-Scale Scene Understanding)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027698

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1