LSUN数据集(Large-Scale Scene Understanding)

2024-06-03 17:52

本文主要是介绍LSUN数据集(Large-Scale Scene Understanding),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LSUN数据集(Large-Scale Scene Understanding)是一个专为计算机视觉研究设计的大规模场景理解数据集。以下是对LSUN数据集的详细介绍:

  1. 创建与目的:
  • LSUN数据集由斯坦福大学计算机视觉实验室创建,旨在为大规模场景理解问题提供数据支持。
  • 该数据集的设计初衷是为了满足深度学习和计算机视觉研究对大规模、多样性图像数据的需求,以训练出更准确、更强大的视觉模型。

  1. 数据规模与类别:
  • LSUN数据集包含了数百万张高分辨率图像,具体数量可能因不同版本或更新而有所变化,但通常包含超过数百万张的图像数据。
  • 这些图像涵盖了多个场景类别,如卧室、客厅、厨房、街道、教室等,使得研究者可以在不同场景下进行图像理解的研究。

  1. 图像特点与标注信息:
  • LSUN数据集中的图像均为高分辨率,能够捕捉到更多的细节信息,有助于模型进行更精确的场景理解。
  • 数据集中的每个图像都有相关的标注信息,如场景类别、图像坐标、对象边界框等。这些标注信息对于训练模型和评估算法性能至关重要。

  1. 数据格式与存储:
  • LSUN数据集中的图像通常以LMDB格式存储,这是一种高效的键值存储数据库格式,适用于大规模图像数据的存储和检索。
  • 数据库文件通常会被压缩,以节省存储空间并方便网络传输。

  1. 获取与使用:
  • LSUN数据集可以通过斯坦福大学计算机视觉实验室的官方网站进行下载。用户需要注册账号并登录后,方可获取下载链接。
  • 下载完成后,用户需要解压缩数据集文件,并根据自己的需求进行数据集的划分和预处理。
  • 使用深度学习框架(如PyTorch或TensorFlow)时,用户可以按照框架的API文档读取训练图像和标签,进行模型的训练和测试。

请注意,由于LSUN数据集规模庞大且涉及高分辨率图像,下载和使用时可能需要较高的硬件配置和网络带宽。此外,用户在使用LSUN数据集时应遵守相关的使用条款和隐私政策。

附上下载代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-from __future__ import print_function, division
import argparse
import json
from os.path import joinimport subprocess
import urllib2__author__ = 'Fisher Yu'
__email__ = 'fy@cs.princeton.edu'
__license__ = 'MIT'def list_categories(tag):
    url = 'http://lsun.cs.princeton.edu/htbin/list.cgi?tag=' + tag
    f = urllib2.urlopen(url)return json.loads(f.read())def download(out_dir, category, set_name, tag):
    url = 'http://lsun.cs.princeton.edu/htbin/download.cgi?tag={tag}' \'&category={category}&set={set_name}'.format(**locals())if set_name == 'test':
        out_name = 'test_lmdb.zip'else:
        out_name = '{category}_{set_name}_lmdb.zip'.format(**locals())
    out_path = join(out_dir, out_name)
    cmd = ['curl', url, '-o', out_path]print('Downloading', category, set_name, 'set')
    subprocess.call(cmd)def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--tag', type=str, default='latest')
    parser.add_argument('-o', '--out_dir', default='')
    parser.add_argument('-c', '--category', default=None)
    args = parser.parse_args()    categories = list_categories(args.tag)if args.category is None:print('Downloading', len(categories), 'categories')for category in categories:
            download(args.out_dir, category, 'train', args.tag)
            download(args.out_dir, category, 'val', args.tag)
        download(args.out_dir, '', 'test', args.tag)else:if args.category == 'test':
            download(args.out_dir, '', 'test', args.tag)elif args.category not in categories:print('Error:', args.category, "doesn't exist in",
                  args.tag, 'LSUN release')else:
            download(args.out_dir, args.category, 'train', args.tag)
            download(args.out_dir, args.category, 'val', args.tag)if __name__ == '__main__':
    main()

自己也在网上找了一下数据集真的很难也不知道对不对

这篇关于LSUN数据集(Large-Scale Scene Understanding)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027698

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元