TFLite:使用1维CNN处理序列数据的过程

2024-06-03 14:58

本文主要是介绍TFLite:使用1维CNN处理序列数据的过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开发环境

tf.__version__
'2.0.0-beta1'

tf.keras.__version__
'2.2.4-tf'

数据来源

http://www.cis.fordham.edu/wisdm/dataset.php

根据sensor数据x, y, z分类出Downstairs, Upstairs, jogging, sitting, standing, walking 6个类别

数据预处理函数

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
from scipy import stats
from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn import preprocessing

import keras
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Reshape, GlobalAveragePooling1D
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Conv1D, MaxPooling1D


columns = ['user','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']
def read_data(file_patch):
    train = pd.read_csv(file_patch, header = None, names = columns)
    train = train.dropna()
    return train

# mean and std
def feature_normalize(feature):
    mu = np.mean(feature, axis=0)
    sigma = np.std(feature, axis=0)
    return (feature - mu) / sigma

# x1,y1,z1, x2, y2, z2
def create_segments_for_rnn(df, step, time_steps=200):
    X_train = []
    Y_train = []
    hot_test = []
    for i in range(0, df.shape[0] - time_steps, step):
        xyz_data = df[['x-axis', 'y-axis', 'z-axis']][i:i+time_steps]
        X_train.append(np.array(xyz_data))

        label = stats.mode(df['activity'][i: i + time_steps])[0][0]
        hot_test.append(label)
    #怎样找到 one-hot和字符串的对应关系?
    Y_train = np.asarray(pd.get_dummies(hot_test), dtype = np.float32)
    return np.array(X_train), Y_train

# x1, x2, x3, -----, x(timesteps), y1,...z1,...
def create_segments_for_cnn(df, step, time_steps=200):
    X_train = []
    Y_train = []
    hot_test = []
    for i in range(0, df.shape[0] - time_steps, step):
        xs = df['x-axis'].values[i: i + time_steps]
        ys = df['y-axis'].values[i: i + time_steps]
        zs = df['z-axis'].values[i: i + time_steps]
        X_train.append([xs, ys, zs])

        label = stats.mode(df['activity'][i: i + time_steps])[0][0]
        hot_test.append(label)

    reshaped_segments = np.asarray(X_train, dtype= np.float32).reshape(-1, time_steps, 3)
    #怎样找到 one-hot和字符串的对应关系?
    Y_train = np.asarray(pd.get_dummies(hot_test), dtype = np.float32)
    return reshaped_segments, Y_train

def shuffle_data(X, Y):
    np.random.seed(10)
    randomList = np.arange(X.shape[0])
    np.random.shuffle(randomList)
    return X[randomList], Y[randomList]

def split_data(X,Y,rate):
  X_train = X[int(X.shape[0]*rate):]
  Y_train = Y[int(Y.shape[0]*rate):]
  X_val = X[:int(X.shape[0]*rate)]
  Y_val = Y[:int(Y.shape[0]*rate)]
  return X_train, Y_train, X_val, Y_val

网络模型

rnn-lstm

参数的意义:64:lstm隐藏单元,input_length:time sequence length, input_dim: input feature number

return_sequences:多对多 还是多对一

def build_rnn_model(shape, num_classes):
  model = Sequential()
  model.add(LSTM(64, input_length = shape[1], input_dim = shape[2], return_sequences = True ))
  model.add(LSTM(64, return_sequences = False))
  model.add(Dense(num_classes, activation='softmax'))
  print(model.summary())
  model.compile(loss='categorical_crossentropy',
                optimizer='adam', metrics=['accuracy'])
  return model

cnn

参数的意义:30:提取多少个feature, 10: kenerl size, filter, input_shape:filter要扫描的形状

def build_cnn_model(shape, num_classes):
  model = Sequential()
  model.add(Conv1D(30, 10, activation='relu', input_shape=(shape[1], shape[2])))
  model.add(Conv1D(30, 10, activation='relu'))
  model.add(MaxPooling1D(3))
  model.add(Conv1D(48, 10, activation='relu'))
  model.add(Conv1D(48, 10, activation='relu'))
  model.add(GlobalAveragePooling1D())
  model.add(Dropout(0.5))
  model.add(Dense(num_classes, activation='softmax'))
  print(model.summary())
  model.compile(loss='categorical_crossentropy',
                optimizer='adam', metrics=['accuracy'])
  return model

这里理解下什么是1D cnn, 什么是2D cnn?

https://juejin.im/post/5beb7432f265da61524cf27c

[译] 在 Keras 中使用一维卷积神经网络处理时间序列数据

对应的参考代码

https://github.com/ni79ls/har-keras-cnn/blob/master/20180903_Keras_HAR_WISDM_CNN_v1.0_for_medium.py

无论是一维、二维还是三维,卷积神经网络(CNNs)都具有相同的特点和相同的处理方法。关键区别在于输入数据的维数以及特征检测器(或滤波器)如何在数据之间滑动

 模型training

df = read_data("WISDM_ar_v1.1_raw.txt")
df['x-axis'] = feature_normalize(df['x-axis'])
df['y-axis'] = feature_normalize(df['y-axis'])
df['z-axis'] = feature_normalize(df['z-axis'])
df.head()

#_x, _y = create_segments_for_cnn(df, 40, 80)
_x, _y = create_segments_for_rnn(df, 40, 80)
_xs, _ys = shuffle_data(_x, _y)

x_train, y_train, x_test, y_test = split_data(_xs, _ys, 0.1)
model = build_cnn_model(x_train.shape, 6)

callbacks_list = [
    keras.callbacks.ModelCheckpoint(
        filepath='callback_test.h5',
    ),
    #keras.callbacks.tensorboard(log_dir='my_log_dir', histogram_freq=1,)
]

# Hyper-parameters
BATCH_SIZE = 400
EPOCHS = 30

# Enable validation to use ModelCheckpoint and EarlyStopping callbacks.
history = model.fit(x_train,
                      y_train,
                      batch_size=BATCH_SIZE,
                      epochs=EPOCHS,
                      validation_split=0.2,
                      #callbacks=callbacks_list,not supported now
                      verbose=1)

数据处理方式的选择

不同数据格式训练出的效果不同
_x, _y = create_segments_for_rnn(df, 40, 80) 较好但生成训练数据慢

_x, _y = create_segments_for_cnn(df, 40, 80) 相对较差,但生成训练数据快

 有关callbacks 和tensorboard

当前tf.keras的版本对callbacks支持的不好,实测只有保存h5文件好用, 要使用keras,callbacks

callbacks_list = [
    keras.callbacks.ModelCheckpoint(
        filepath='lstm_model.h5',
    ),
    keras.callbacks.TensorBoard(
        log_dir='my_log_dir',
        histogram_freq=1,
    )
]

图形化表示训练效果

从网上找到一些方法,但报找不到xxx, 只要用history.history.keys()找到对应的字段就可以了

In [54]: history.history.keys()
Out[54]: ['loss', 'val_accuracy', 'val_loss', 'accuracy']

print("\n--- Learning curve of model training ---\n")

# summarize history for accuracy and loss
plt.figure(figsize=(6, 4))
plt.plot(history.history['accuracy'], "g--", label="Accuracy of training data")
plt.plot(history.history['val_accuracy'], "g", label="Accuracy of validation data")
plt.plot(history.history['loss'], "r--", label="Loss of training data")
plt.plot(history.history['val_loss'], "r", label="Loss of validation data")
plt.title('Model Accuracy and Loss')
plt.ylabel('Accuracy and Loss')
plt.xlabel('Training Epoch')
plt.ylim(0)
plt.legend()
plt.show()

测试数据上的效果

score = model.evaluate(x_test, y_test, verbose=1)

保存h5格式model文件

model.save('0710_cnn.h5')

h5转换为tflite格式文件

使用tflite_convert (推荐)


usage: tflite_convert [-h] --output_file OUTPUT_FILE
                      (--saved_model_dir SAVED_MODEL_DIR | --keras_model_file KERAS_MODEL_FILE)

tf.lite.TFLiteConverter.from_keras_model(model)

model = keras.models.load_model('path_to_my_model.h5')

converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
 

tflite 模型文件在手机上的使用

修改编译 minimal

bazel build --cxxopt='--std=c++11' //tensorflow/lite/examples/minimal:minimal \
--crosstool_top=//external:android/crosstool \
--host_crosstool_top=@bazel_tools//tools/cpp:toolchain \
--cpu=arm64-v8a

tflite::PrintInterpreterState(interpreter.get());

会打印出这个model的结构如:

Interpreter has 41 tensors and 12 nodes

inputs/outputs


Inputs: 1
Outputs: 0

tensor

Tensor   0 Identity             kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor   1 conv1d_input         kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 80 3
Tensor   2 sequential/conv1d/Relu kTfLiteFloat32  kTfLiteArenaRw       8520 bytes ( 0.0 MB)  1 1 71 30
Tensor   3 sequential/conv1d/conv1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 1 80 3
Tensor   4 sequential/conv1d/conv1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor   5 sequential/conv1d/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo       3600 bytes ( 0.0 MB)  30 1 10 3
Tensor   6 sequential/conv1d/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        120 bytes ( 0.0 MB)  30
Tensor   7 sequential/conv1d_1/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      36000 bytes ( 0.0 MB)  30 1 10 30
Tensor   8 sequential/conv1d_1/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw       7440 bytes ( 0.0 MB)  1 1 62 30
Tensor   9 sequential/conv1d_1/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        120 bytes ( 0.0 MB)  30
Tensor  10 sequential/conv1d_2/conv1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw       2400 bytes ( 0.0 MB)  1 1 20 30
Tensor  11 sequential/conv1d_2/conv1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor  12 sequential/conv1d_2/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      57600 bytes ( 0.1 MB)  48 1 10 30
Tensor  13 sequential/conv1d_2/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw       2112 bytes ( 0.0 MB)  1 1 11 48
Tensor  14 sequential/conv1d_2/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        192 bytes ( 0.0 MB)  48
Tensor  15 sequential/conv1d_3/Relu kTfLiteFloat32  kTfLiteArenaRw        384 bytes ( 0.0 MB)  1 2 48
Tensor  16 sequential/conv1d_3/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      92160 bytes ( 0.1 MB)  48 1 10 48
Tensor  17 sequential/conv1d_3/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw        384 bytes ( 0.0 MB)  1 1 2 48
Tensor  18 sequential/conv1d_3/conv1d/Squeeze_shape kTfLiteInt32   kTfLiteMmapRo         12 bytes ( 0.0 MB)  3
Tensor  19 sequential/conv1d_3/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        192 bytes ( 0.0 MB)  48
Tensor  20 sequential/dense/BiasAdd kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor  21 sequential/dense/MatMul/ReadVariableOp/transpose kTfLiteFloat32   kTfLiteMmapRo       1152 bytes ( 0.0 MB)  6 48
Tensor  22 sequential/dense/MatMul_bias kTfLiteFloat32   kTfLiteMmapRo         24 bytes ( 0.0 MB)  6
Tensor  23 sequential/global_average_pooling1d/Mean kTfLiteFloat32  kTfLiteArenaRw        192 bytes ( 0.0 MB)  1 48
Tensor  24 sequential/global_average_pooling1d/Mean/reduction_indices kTfLiteInt32   kTfLiteMmapRo          4 bytes ( 0.0 MB) 
Tensor  25 sequential/max_pooling1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw       7440 bytes ( 0.0 MB)  1 62 1 30
Tensor  26 sequential/max_pooling1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor  27 sequential/max_pooling1d/MaxPool kTfLiteFloat32  kTfLiteArenaRw       2400 bytes ( 0.0 MB)  1 20 1 30
Tensor  28 (null)               kTfLiteInt32  kTfLiteArenaRw         12 bytes ( 0.0 MB)  3
Tensor  29 (null)               kTfLiteInt32  kTfLiteArenaRw          4 bytes ( 0.0 MB)  1
Tensor  30 (null)               kTfLiteFloat32  kTfLiteArenaRw        192 bytes ( 0.0 MB)  48
Tensor  31 (null)               kTfLiteNoType  kTfLiteMemNone          0 bytes ( 0.0 MB)  (null)
Tensor  32 (null)               kTfLiteNoType  kTfLiteMemNone          0 bytes ( 0.0 MB)  (null)
Tensor  33 (null)               kTfLiteFloat32  kTfLiteArenaRw       8520 bytes ( 0.0 MB)  1 1 71 30
Tensor  34 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent       3600 bytes ( 0.0 MB)  30 30
Tensor  35 (null)               kTfLiteFloat32  kTfLiteArenaRw      74400 bytes ( 0.1 MB)  1 1 62 300
Tensor  36 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      36000 bytes ( 0.0 MB)  300 30
Tensor  37 (null)               kTfLiteFloat32  kTfLiteArenaRw      13200 bytes ( 0.0 MB)  1 1 11 300
Tensor  38 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      57600 bytes ( 0.1 MB)  300 48
Tensor  39 (null)               kTfLiteFloat32  kTfLiteArenaRw       3840 bytes ( 0.0 MB)  1 1 2 480
Tensor  40 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      92160 bytes ( 0.1 MB)  480 48

Node

Node   0 Operator Builtin Code  22
  Inputs: 1 4
  Outputs: 3
Node   1 Operator Builtin Code   3
  Inputs: 3 5 6
  Outputs: 2
Node   2 Operator Builtin Code   3
  Inputs: 2 7 9
  Outputs: 8
Node   3 Operator Builtin Code  22
  Inputs: 8 26
  Outputs: 25
Node   4 Operator Builtin Code  17
  Inputs: 25
  Outputs: 27
Node   5 Operator Builtin Code  22
  Inputs: 27 11
  Outputs: 10
Node   6 Operator Builtin Code   3
  Inputs: 10 12 14
  Outputs: 13
Node   7 Operator Builtin Code   3
  Inputs: 13 16 19
  Outputs: 17
Node   8 Operator Builtin Code  22
  Inputs: 17 18
  Outputs: 15
Node   9 Operator Builtin Code  40
  Inputs: 15 24
  Outputs: 23
Node  10 Operator Builtin Code   9
  Inputs: 23 21 22
  Outputs: 20
Node  11 Operator Builtin Code  25
  Inputs: 20
  Outputs: 0

Tensor的名字和形状

Tensor   0 Identity             kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor   1 conv1d_input         kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 80 3

怎样赋值input 

如果输入数据的形状如一维矢量,二维矩阵等,会引起tensor data的赋值方式吗?或者说需要根据shape更改输入数据的表示吗?如用二维数组表示矩阵等。其实没有必要,只要数据存储顺序按照二维的格式就行,可以用np.reshape一下即可

  float sensor_test[] = { //[0, 1, 0...]
          -1.02622092e-01,  1.73495474e+00,  1.96860060e+00, -7.71851445e-03,
         -5.41881331e-01,  7.67533877e-01, -3.54595601e-02, -2.29101321e+00,

        -----

}

     // Fill input buffers
    // TODO(user): Insert code to fill input tensors
    Interpreter *interp = interpreter.get();
    TfLiteTensor* input = interp->tensor(interp->inputs()[0]);
    for (int i=0; i < input->bytes/4; i++) {
      //input->data.f[i] = feature_test[i];
      input->data.f[i] = sensor_test[i];//和一维数据时一样,不用多维数组表示数据
      //input->data.f[i] = tensor_test_1[i];
    }

 

TFLite 模型quantilization化

toco需要是源码编译生成的不是自动安装的,另外后面的参数可以从上面tflite的打印log中看出

从结果看并不是所有的float变为uint8型

./toco --input_file='30_cnn.tflite' --input_format=TFLITE --output_format=TFLITE --output_file='quanized_30_cnn.tflite' --inference_type=FLOAT --input_type=FLOAT --input_arrays=conv1d_input --output_arrays=Identity --input_shapes=1,80,3 --post_training_quantize 
2019-07-11 12:06:26.592093: W tensorflow/lite/toco/toco_cmdline_flags.cc:283] --input_type is deprecated. It was an ambiguous flag that set both --input_data_types and --inference_input_type. If you are trying to complement the input file with information about the type of input arrays, use --input_data_type. If you are trying to control the quantization/dequantization of real-numbers input arrays in the output file, use --inference_input_type.
2019-07-11 12:06:26.594579: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before Removing unused ops: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.594937: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before general graph transformations: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.595742: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] After general graph transformations pass 1: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.596726: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before dequantization graph transformations: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.597362: I tensorflow/lite/toco/allocate_transient_arrays.cc:345] Total transient array allocated size: 17024 bytes, theoretical optimal value: 16064 bytes.
2019-07-11 12:06:26.597556: I tensorflow/lite/toco/toco_tooling.cc:397] Estimated count of arithmetic ops: 0.00166014 billion (note that a multiply-add is counted as 2 ops).
2019-07-11 12:06:26.598574: I tensorflow/lite/toco/tflite/export.cc:569] Quantizing TFLite model after conversion to flatbuffer. dump_graphviz will only output the model before this transformation. To visualize the output graph use lite/tools/optimize.py.
2019-07-11 12:06:26.603058: I tensorflow/lite/tools/optimize/quantize_weights.cc:199] Skipping quantization of tensor sequential/conv1d/conv1d/ExpandDims_1 because it has fewer than 1024 elements (900).
2019-07-11 12:06:26.603184: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_1/conv1d/ExpandDims_1 with 9000 elements for hybrid evaluation.
2019-07-11 12:06:26.603352: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_2/conv1d/ExpandDims_1 with 14400 elements for hybrid evaluation.
2019-07-11 12:06:26.603476: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_3/conv1d/ExpandDims_1 with 23040 elements for hybrid evaluation.
2019-07-11 12:06:26.603670: I tensorflow/lite/tools/optimize/quantize_weights.cc:199] Skipping quantization of tensor sequential/dense/MatMul/ReadVariableOp/transpose because it has fewer than 1024 elements (288). 

LSTM模型h5转换为tflite格式

原本计划使用lstm,且从tflite的operator也看到lstm, 但转换失败

ValueError: Cannot find the Placeholder op that is an input to the ReadVariableOp.

问题对应的源码如下:如果不是Placeholder, 是什么哪?

   165       if map_name_to_node[input_name].op != "Placeholder":
   166         raise ValueError("Cannot find the Placeholder op that is an input "
   167                          "to the ReadVariableOp.")

直接在源码打log没有输出,原因不明。

使用PyCharm 打断点:map_name_to_node[input_name].op 是Switch

看Graph_def中有大量的Switch, 也许是传说中的控制流吧,直接放弃lstm 改用cnn,从效果看也挺好

这篇关于TFLite:使用1维CNN处理序列数据的过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027316

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

关于Mybatis和JDBC的使用及区别

《关于Mybatis和JDBC的使用及区别》:本文主要介绍关于Mybatis和JDBC的使用及区别,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、JDBC1.1、流程1.2、优缺点2、MyBATis2.1、执行流程2.2、使用2.3、实现方式1、XML配置文件

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增