elasticsearch__3__java操作之Facets 数据分组统计处理

2024-06-03 13:58

本文主要是介绍elasticsearch__3__java操作之Facets 数据分组统计处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



elasticsearch 分布式搜索系列专栏:http://blog.csdn.net/xiaohulunb/article/category/2399789

内容涉及代码GitHub地址: 点击打开链接



官方API:http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/java-facets.html


package com.framework_technology.elasticsearch;import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.index.query.FilterBuilders;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.facet.FacetBuilder;
import org.elasticsearch.search.facet.FacetBuilders;
import org.elasticsearch.search.facet.Facets;
import org.elasticsearch.search.facet.datehistogram.DateHistogramFacet;
import org.elasticsearch.search.facet.datehistogram.DateHistogramFacetBuilder;
import org.elasticsearch.search.facet.filter.FilterFacet;
import org.elasticsearch.search.facet.filter.FilterFacetBuilder;
import org.elasticsearch.search.facet.geodistance.GeoDistanceFacet;
import org.elasticsearch.search.facet.geodistance.GeoDistanceFacetBuilder;
import org.elasticsearch.search.facet.histogram.HistogramFacet;
import org.elasticsearch.search.facet.histogram.HistogramFacetBuilder;
import org.elasticsearch.search.facet.query.QueryFacet;
import org.elasticsearch.search.facet.query.QueryFacetBuilder;
import org.elasticsearch.search.facet.range.RangeFacet;
import org.elasticsearch.search.facet.range.RangeFacetBuilder;
import org.elasticsearch.search.facet.statistical.StatisticalFacet;
import org.elasticsearch.search.facet.statistical.StatisticalFacetBuilder;
import org.elasticsearch.search.facet.terms.TermsFacet;
import org.elasticsearch.search.facet.terms.TermsFacetBuilder;
import org.elasticsearch.search.facet.termsstats.TermsStatsFacet;
import org.elasticsearch.search.facet.termsstats.TermsStatsFacetBuilder;import java.util.Map;
import java.util.concurrent.TimeUnit;/*** Created by lw on 14-7-15.* <p>* 搜索 Facets分组统计* <p>* <a>http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/java-facets.html</a>* http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-facets.html*/
public class Es_Facets {/*** termsFacet* 字段分组-Count 出现次数统计*/private static void termsFacet() {TermsFacetBuilder termsFacetBuilder = FacetBuilders.termsFacet("TermsFacetBuilder").field("name").size(Integer.MAX_VALUE);//取得 name分组后COUNT值,显示size值TermsFacet termsFacet = (TermsFacet) searchByQuery_Facets(termsFacetBuilder).get("TermsFacetBuilder");System.out.println("termsFacet.getTotalCount():" + termsFacet.getTotalCount());// Total terms doc countSystem.out.println("termsFacet.getOtherCount():" + termsFacet.getOtherCount());// Not shown terms doc countSystem.out.println("termsFacet.getMissingCount():" + termsFacet.getMissingCount());// Without term doc countfor (TermsFacet.Entry entry : termsFacet) {// Term -》Doc countSystem.out.println("key :" + entry.getTerm() + "\t value:" + entry.getCount());}}/*** termsStatsFacet* <p>* 统计 key 下面的 value 的值 (Max/Min,Count)* 以 key 分组* 对 value 求一些函数*/private static void termsStatsFacet() {TermsStatsFacetBuilder termsStatsFacetBuilder = FacetBuilders.termsStatsFacet("TermsStatsFacetBuilder").keyField("").valueField("");TermsStatsFacet entries = (TermsStatsFacet) searchByQuery_Facets(termsStatsFacetBuilder).get("TermsStatsFacetBuilder");System.out.println("Without term doc count -> " + entries.getMissingCount());// For each entryfor (TermsStatsFacet.Entry entry : entries) {entry.getTerm();            // Termentry.getCount();           // Doc countentry.getMin();             // Min valueentry.getMax();             // Max valueentry.getMean();            // Meanentry.getTotal();           // Sum of valuesSystem.out.println(entry);}}/*** rangeFacet* 分组范围性统计*/private static void rangeFacet() {/*** 20-30* 10-∞* -∞-20* 三个范围做统计*/RangeFacetBuilder rangeFacetBuilder = FacetBuilders.rangeFacet("RangeFacetBuilder").field("age").addRange(20, 30).addUnboundedFrom(10).addUnboundedTo(20);RangeFacet rangeFacet = (RangeFacet) searchByQuery_Facets(rangeFacetBuilder).get("RangeFacetBuilder");for (RangeFacet.Entry entry : rangeFacet) {// sr is here your SearchResponse objectentry.getFrom();    // Range from requestedentry.getTo();      // Range to requestedentry.getCount();   // Doc countentry.getMin();     // Min valueentry.getMax();     // Max valueentry.getMean();    // Meanentry.getTotal();   // Sum of valuesSystem.out.println(entry.toString());}}/*** histogramFacet* 直方图统计- 按照时间间隔*/private static void histogramFacet() {HistogramFacetBuilder histogramFacetBuilder = FacetBuilders.histogramFacet("HistogramFacetBuilder").field("birthday") //生日分组统计.interval(1, TimeUnit.MINUTES); //按分钟数分组HistogramFacet histogramFacet = (HistogramFacet) searchByQuery_Facets(histogramFacetBuilder).get("HistogramFacetBuilder");// For each entry -Key (X-Axis) -Doc count (Y-Axis)for (HistogramFacet.Entry entry : histogramFacet) {System.out.println("entry.getKey()->" + entry.getKey() + "\t entry.getCount()->" + entry.getCount());}}/*** dateHistogramFacet* 数据直方图统计- 按照时间间隔*/private static void dateHistogramFacet() {DateHistogramFacetBuilder dateHistogramFacetBuilder = FacetBuilders.dateHistogramFacet("DateHistogramFacetBuilder").field("birthday")// Your date field.interval("minute");// You can also use "quarter", "month", "week", "day",// "hour" and "minute" or notation like "1.5h" or "2w"DateHistogramFacet histogramFacet= (DateHistogramFacet) searchByQuery_Facets(dateHistogramFacetBuilder).get("DateHistogramFacetBuilder");for (DateHistogramFacet.Entry entry : histogramFacet) {entry.getTime();    // Date in ms since epoch (X-Axis)entry.getCount();   // Doc count (Y-Axis)}}/*** filterFacet* 过滤条件后统计*/private static void filterFacet() {FilterFacetBuilder filterFacetBuilder = FacetBuilders.filterFacet("FilterFacetBuilder",FilterBuilders.termFilter("name", "葫芦747娃"));    // 返回命中“指定filter”的结果数。FilterFacet filterFacet = (FilterFacet) searchByQuery_Facets(filterFacetBuilder).get("FilterFacetBuilder");System.out.println("filterFacet.getCount()->" + filterFacet.getCount());// Number of docs that matched}/*** queryFacet* 过滤条件后统计*/private static void queryFacet() {//Query 条件过滤后统计QueryFacetBuilder queryFacetBuilder = FacetBuilders.queryFacet("QueryFacetBuilder",QueryBuilders.matchQuery("age", 29));QueryFacet queryFacet = (QueryFacet) searchByQuery_Facets(queryFacetBuilder).get("QueryFacetBuilder");System.out.println("queryFacet.getCount()->" + queryFacet.getCount());// Number of docs that matched}/*** statisticalFacet* 数学统计 - StatisticalFacet需要作用在数值型字段上面,他会统计总数、总和、最值、均值等*/private static void statisticalFacet() {StatisticalFacetBuilder statisticalFacetBuilder = FacetBuilders.statisticalFacet("StatisticalFacetBuilder").field("height");StatisticalFacet statisticalFacet =(StatisticalFacet) searchByQuery_Facets(statisticalFacetBuilder).get("StatisticalFacetBuilder");statisticalFacet.getCount();           // Doc countstatisticalFacet.getMin();             // Min valuestatisticalFacet.getMax();             // Max valuestatisticalFacet.getMean();            // MeanstatisticalFacet.getTotal();           // Sum of valuesstatisticalFacet.getStdDeviation();    // Standard DeviationstatisticalFacet.getSumOfSquares();    // Sum of SquaresstatisticalFacet.getVariance();        // Variance}/*** geoDistanceFacet* 数学统计 - StatisticalFacet需要作用在数值型字段上面,他会统计总数、总和、最值、均值等*/private static void geoDistanceFacet() {GeoDistanceFacetBuilder geoDistanceFacetBuilder = FacetBuilders.geoDistanceFacet("GeoDistanceFacetBuilder").field("location")                   // Field containing coordinates we want to compare with.point(40, -70)                     // Point from where we start (0).addUnboundedFrom(10)               // 0 to 10 km (excluded).addRange(10, 20)                   // 10 to 20 km (excluded).addRange(20, 100)                  // 20 to 100 km (excluded).addUnboundedTo(100)                // from 100 km to infinity (and beyond ;-) ).unit(DistanceUnit.DEFAULT);        // All distances are in kilometers. Can be MILESGeoDistanceFacet geoDistanceFacet =(GeoDistanceFacet) searchByQuery_Facets(geoDistanceFacetBuilder).get("GeoDistanceFacetBuilder");// For each entryfor (GeoDistanceFacet.Entry entry : geoDistanceFacet) {entry.getFrom();            // Distance from requestedentry.getTo();              // Distance to requestedentry.getCount();           // Doc countentry.getMin();             // Min valueentry.getMax();             // Max valueentry.getTotal();           // Sum of valuesentry.getMean();            // Mean}}/*** 搜索,Query搜索API* Facets 查询-对搜索结果进行计算处理API*/private static Map searchByQuery_Facets(FacetBuilder facetBuilder) {SearchResponse response = Es_Utils.client.prepareSearch(Es_Utils.INDEX_DEMO_01).setTypes(Es_Utils.INDEX_DEMO_01_MAPPING).setQuery(QueryBuilders.termQuery("age", 29))//.setPostFilter(FilterBuilders.rangeFilter("age").gt(98)).addFacet(facetBuilder).setSize(1000).execute().actionGet();//Es_Utils.writeSearchResponse(response);Facets facets = response.getFacets();return facets.getFacets();}public static void main(String[] args) {Es_Utils.startupClient();dateHistogramFacet();}
}



这篇关于elasticsearch__3__java操作之Facets 数据分组统计处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027185

相关文章

Java如何从Redis中批量读取数据

《Java如何从Redis中批量读取数据》:本文主要介绍Java如何从Redis中批量读取数据的情况,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一.背景概述二.分析与实现三.发现问题与屡次改进3.1.QPS过高而且波动很大3.2.程序中断,抛异常3.3.内存消

SpringBoot使用ffmpeg实现视频压缩

《SpringBoot使用ffmpeg实现视频压缩》FFmpeg是一个开源的跨平台多媒体处理工具集,用于录制,转换,编辑和流式传输音频和视频,本文将使用ffmpeg实现视频压缩功能,有需要的可以参考... 目录核心功能1.格式转换2.编解码3.音视频处理4.流媒体支持5.滤镜(Filter)安装配置linu

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

在Spring Boot中实现HTTPS加密通信及常见问题排查

《在SpringBoot中实现HTTPS加密通信及常见问题排查》HTTPS是HTTP的安全版本,通过SSL/TLS协议为通讯提供加密、身份验证和数据完整性保护,下面通过本文给大家介绍在SpringB... 目录一、HTTPS核心原理1.加密流程概述2.加密技术组合二、证书体系详解1、证书类型对比2. 证书获

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除