elasticsearch__3__java操作之Facets 数据分组统计处理

2024-06-03 13:58

本文主要是介绍elasticsearch__3__java操作之Facets 数据分组统计处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



elasticsearch 分布式搜索系列专栏:http://blog.csdn.net/xiaohulunb/article/category/2399789

内容涉及代码GitHub地址: 点击打开链接



官方API:http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/java-facets.html


package com.framework_technology.elasticsearch;import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.index.query.FilterBuilders;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.facet.FacetBuilder;
import org.elasticsearch.search.facet.FacetBuilders;
import org.elasticsearch.search.facet.Facets;
import org.elasticsearch.search.facet.datehistogram.DateHistogramFacet;
import org.elasticsearch.search.facet.datehistogram.DateHistogramFacetBuilder;
import org.elasticsearch.search.facet.filter.FilterFacet;
import org.elasticsearch.search.facet.filter.FilterFacetBuilder;
import org.elasticsearch.search.facet.geodistance.GeoDistanceFacet;
import org.elasticsearch.search.facet.geodistance.GeoDistanceFacetBuilder;
import org.elasticsearch.search.facet.histogram.HistogramFacet;
import org.elasticsearch.search.facet.histogram.HistogramFacetBuilder;
import org.elasticsearch.search.facet.query.QueryFacet;
import org.elasticsearch.search.facet.query.QueryFacetBuilder;
import org.elasticsearch.search.facet.range.RangeFacet;
import org.elasticsearch.search.facet.range.RangeFacetBuilder;
import org.elasticsearch.search.facet.statistical.StatisticalFacet;
import org.elasticsearch.search.facet.statistical.StatisticalFacetBuilder;
import org.elasticsearch.search.facet.terms.TermsFacet;
import org.elasticsearch.search.facet.terms.TermsFacetBuilder;
import org.elasticsearch.search.facet.termsstats.TermsStatsFacet;
import org.elasticsearch.search.facet.termsstats.TermsStatsFacetBuilder;import java.util.Map;
import java.util.concurrent.TimeUnit;/*** Created by lw on 14-7-15.* <p>* 搜索 Facets分组统计* <p>* <a>http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/java-facets.html</a>* http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-facets.html*/
public class Es_Facets {/*** termsFacet* 字段分组-Count 出现次数统计*/private static void termsFacet() {TermsFacetBuilder termsFacetBuilder = FacetBuilders.termsFacet("TermsFacetBuilder").field("name").size(Integer.MAX_VALUE);//取得 name分组后COUNT值,显示size值TermsFacet termsFacet = (TermsFacet) searchByQuery_Facets(termsFacetBuilder).get("TermsFacetBuilder");System.out.println("termsFacet.getTotalCount():" + termsFacet.getTotalCount());// Total terms doc countSystem.out.println("termsFacet.getOtherCount():" + termsFacet.getOtherCount());// Not shown terms doc countSystem.out.println("termsFacet.getMissingCount():" + termsFacet.getMissingCount());// Without term doc countfor (TermsFacet.Entry entry : termsFacet) {// Term -》Doc countSystem.out.println("key :" + entry.getTerm() + "\t value:" + entry.getCount());}}/*** termsStatsFacet* <p>* 统计 key 下面的 value 的值 (Max/Min,Count)* 以 key 分组* 对 value 求一些函数*/private static void termsStatsFacet() {TermsStatsFacetBuilder termsStatsFacetBuilder = FacetBuilders.termsStatsFacet("TermsStatsFacetBuilder").keyField("").valueField("");TermsStatsFacet entries = (TermsStatsFacet) searchByQuery_Facets(termsStatsFacetBuilder).get("TermsStatsFacetBuilder");System.out.println("Without term doc count -> " + entries.getMissingCount());// For each entryfor (TermsStatsFacet.Entry entry : entries) {entry.getTerm();            // Termentry.getCount();           // Doc countentry.getMin();             // Min valueentry.getMax();             // Max valueentry.getMean();            // Meanentry.getTotal();           // Sum of valuesSystem.out.println(entry);}}/*** rangeFacet* 分组范围性统计*/private static void rangeFacet() {/*** 20-30* 10-∞* -∞-20* 三个范围做统计*/RangeFacetBuilder rangeFacetBuilder = FacetBuilders.rangeFacet("RangeFacetBuilder").field("age").addRange(20, 30).addUnboundedFrom(10).addUnboundedTo(20);RangeFacet rangeFacet = (RangeFacet) searchByQuery_Facets(rangeFacetBuilder).get("RangeFacetBuilder");for (RangeFacet.Entry entry : rangeFacet) {// sr is here your SearchResponse objectentry.getFrom();    // Range from requestedentry.getTo();      // Range to requestedentry.getCount();   // Doc countentry.getMin();     // Min valueentry.getMax();     // Max valueentry.getMean();    // Meanentry.getTotal();   // Sum of valuesSystem.out.println(entry.toString());}}/*** histogramFacet* 直方图统计- 按照时间间隔*/private static void histogramFacet() {HistogramFacetBuilder histogramFacetBuilder = FacetBuilders.histogramFacet("HistogramFacetBuilder").field("birthday") //生日分组统计.interval(1, TimeUnit.MINUTES); //按分钟数分组HistogramFacet histogramFacet = (HistogramFacet) searchByQuery_Facets(histogramFacetBuilder).get("HistogramFacetBuilder");// For each entry -Key (X-Axis) -Doc count (Y-Axis)for (HistogramFacet.Entry entry : histogramFacet) {System.out.println("entry.getKey()->" + entry.getKey() + "\t entry.getCount()->" + entry.getCount());}}/*** dateHistogramFacet* 数据直方图统计- 按照时间间隔*/private static void dateHistogramFacet() {DateHistogramFacetBuilder dateHistogramFacetBuilder = FacetBuilders.dateHistogramFacet("DateHistogramFacetBuilder").field("birthday")// Your date field.interval("minute");// You can also use "quarter", "month", "week", "day",// "hour" and "minute" or notation like "1.5h" or "2w"DateHistogramFacet histogramFacet= (DateHistogramFacet) searchByQuery_Facets(dateHistogramFacetBuilder).get("DateHistogramFacetBuilder");for (DateHistogramFacet.Entry entry : histogramFacet) {entry.getTime();    // Date in ms since epoch (X-Axis)entry.getCount();   // Doc count (Y-Axis)}}/*** filterFacet* 过滤条件后统计*/private static void filterFacet() {FilterFacetBuilder filterFacetBuilder = FacetBuilders.filterFacet("FilterFacetBuilder",FilterBuilders.termFilter("name", "葫芦747娃"));    // 返回命中“指定filter”的结果数。FilterFacet filterFacet = (FilterFacet) searchByQuery_Facets(filterFacetBuilder).get("FilterFacetBuilder");System.out.println("filterFacet.getCount()->" + filterFacet.getCount());// Number of docs that matched}/*** queryFacet* 过滤条件后统计*/private static void queryFacet() {//Query 条件过滤后统计QueryFacetBuilder queryFacetBuilder = FacetBuilders.queryFacet("QueryFacetBuilder",QueryBuilders.matchQuery("age", 29));QueryFacet queryFacet = (QueryFacet) searchByQuery_Facets(queryFacetBuilder).get("QueryFacetBuilder");System.out.println("queryFacet.getCount()->" + queryFacet.getCount());// Number of docs that matched}/*** statisticalFacet* 数学统计 - StatisticalFacet需要作用在数值型字段上面,他会统计总数、总和、最值、均值等*/private static void statisticalFacet() {StatisticalFacetBuilder statisticalFacetBuilder = FacetBuilders.statisticalFacet("StatisticalFacetBuilder").field("height");StatisticalFacet statisticalFacet =(StatisticalFacet) searchByQuery_Facets(statisticalFacetBuilder).get("StatisticalFacetBuilder");statisticalFacet.getCount();           // Doc countstatisticalFacet.getMin();             // Min valuestatisticalFacet.getMax();             // Max valuestatisticalFacet.getMean();            // MeanstatisticalFacet.getTotal();           // Sum of valuesstatisticalFacet.getStdDeviation();    // Standard DeviationstatisticalFacet.getSumOfSquares();    // Sum of SquaresstatisticalFacet.getVariance();        // Variance}/*** geoDistanceFacet* 数学统计 - StatisticalFacet需要作用在数值型字段上面,他会统计总数、总和、最值、均值等*/private static void geoDistanceFacet() {GeoDistanceFacetBuilder geoDistanceFacetBuilder = FacetBuilders.geoDistanceFacet("GeoDistanceFacetBuilder").field("location")                   // Field containing coordinates we want to compare with.point(40, -70)                     // Point from where we start (0).addUnboundedFrom(10)               // 0 to 10 km (excluded).addRange(10, 20)                   // 10 to 20 km (excluded).addRange(20, 100)                  // 20 to 100 km (excluded).addUnboundedTo(100)                // from 100 km to infinity (and beyond ;-) ).unit(DistanceUnit.DEFAULT);        // All distances are in kilometers. Can be MILESGeoDistanceFacet geoDistanceFacet =(GeoDistanceFacet) searchByQuery_Facets(geoDistanceFacetBuilder).get("GeoDistanceFacetBuilder");// For each entryfor (GeoDistanceFacet.Entry entry : geoDistanceFacet) {entry.getFrom();            // Distance from requestedentry.getTo();              // Distance to requestedentry.getCount();           // Doc countentry.getMin();             // Min valueentry.getMax();             // Max valueentry.getTotal();           // Sum of valuesentry.getMean();            // Mean}}/*** 搜索,Query搜索API* Facets 查询-对搜索结果进行计算处理API*/private static Map searchByQuery_Facets(FacetBuilder facetBuilder) {SearchResponse response = Es_Utils.client.prepareSearch(Es_Utils.INDEX_DEMO_01).setTypes(Es_Utils.INDEX_DEMO_01_MAPPING).setQuery(QueryBuilders.termQuery("age", 29))//.setPostFilter(FilterBuilders.rangeFilter("age").gt(98)).addFacet(facetBuilder).setSize(1000).execute().actionGet();//Es_Utils.writeSearchResponse(response);Facets facets = response.getFacets();return facets.getFacets();}public static void main(String[] args) {Es_Utils.startupClient();dateHistogramFacet();}
}



这篇关于elasticsearch__3__java操作之Facets 数据分组统计处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027185

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——