Spark-StructuredStreaming checkpointLocation分析、优化耗时

本文主要是介绍Spark-StructuredStreaming checkpointLocation分析、优化耗时,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1 问题描述
  • 2 分析 checkpointLocation 配置
    • 2.1 checkpointLocation 在源码调用链
    • 2.2 MetadataLog(元数据日志接口)
  • 3 分析 checkpointLocation 目录内容
    • 3.1 offsets 目录
    • 3.2 commitLog 目录
    • 3.3 metadata 目录
    • 3.4 sources 目录
    • 3.5 sinks 目录
  • 4 解决方案
    • 4.1 File 作为接收端
    • 4.2 Elasticsearch 作为接收端

内容可能持续性修改完善,最新专栏内容与 spark-docs 同步,源码与 spark-advanced 同步。

1 问题描述

Spark StructuredStreaming 实时任务 kafka -> elasticsearchkafka -> hdfs(parquet格式文件) 任务运行过程中每隔固定时间后某个出现耗时较长。

本内容以kafka -> elasticsearch为例说明,生产环境版本号 Spark-2.4.0,下图为 SQL-UI Job 运行耗时情况:
job-sql-time

问题定位
分析耗时较长任务出现时间,发现出现该问题间隔时间点固定,怀疑是spark某种机制导致,与任务逻辑无关性较大。

查看指定的 checkpointPath 目录发现,在 $checkpointPath/sinks/elasticsearch 下与SQL-UI Job 长时间耗时的时间点一致。初步判断控制生成大文件的方式或者策略即可解决问题。
job-sink-es-checekpoint-compact

2 分析 checkpointLocation 配置

2.1 checkpointLocation 在源码调用链

分析源码查看 StructuredStreaming 启动流程发现,DataStreamWriter#start 方法启动一个 StreamingQuery
同时将 checkpointLocation 配置参数传递给StreamingQuery管理。

StreamingQuery 接口实现关系如下:
StreamingQuery_uml

  • StreamingQueryWrapper 仅包装了一个不可序列化的StreamExecution
  • StreamExecution 管理Spark SQL查询的执行器
    • MicroBatchExecution 微批处理执行器
    • ContinuousExecution 连续处理(流式)执行器

因此我们仅需要分析 checkpointLocation 在 StreamExecution中调用即可。

StreamExecution 中 protected def checkpointFile(name: String): String 方法为所有与 checkpointLocation 有关逻辑,该方法返回 $checkpointFile/name 路径

2.2 MetadataLog(元数据日志接口)

spark 提供了org.apache.spark.sql.execution.streaming.MetadataLog接口用于统一处理元数据日志信息。
checkpointLocation 文件内容均使用 MetadataLog进行维护。

分析 MetadataLog 接口实现关系如下:
MetadataLog_uml

各类作用说明

  • NullMetadataLog 空日志,即不输出日志直接丢弃
  • HDFSMetadataLog 使用 HDFS 作为元数据日志输出
    • CommitLog 提交日志
    • OffsetSeqLog 偏移量日志
    • CompactibleFileStreamLog 封装了支持按大小合并、删除历史记录的 MetadataLog
      • FileStreamSourceLog 文件类型作为数据源时日志记录
      • FileStreamSinkLog 文件类型作为数据接收端时日志记录
      • EsSinkMetadataLog Es作为数据接收端时日志记录

分析 CompactibleFileStreamLog#compact 合并逻辑简单描述为:

假设有 0,1,2,3,4,5,6,7,8,9,10 个批次依次到达,合并大小为3
当前合并结果为   `0,1,2.compact,3,4`
下一次合并结果为 `0,1,2.compact,3,4,5.compact` , **说明:5.compact 文件内容 = 2.compact + 3 + 4**last.compact 文件大小会随着批次运行无限增大
...

分析 CompactibleFileStreamLog 删除过期文件逻辑:

// CompactibleFileStreamLog#add 方法被调用时,默认会判断是否支持删除操作override def add(batchId: Long, logs: Array[T]): Boolean = {val batchAdded =if (isCompactionBatch(batchId, compactInterval)) { // 是否合并compact(batchId, logs)} else {super.add(batchId, logs)}if (batchAdded && isDeletingExpiredLog) { // 添加成功且支持删除过期文件// 删除时判断当前批次是否在 spark.sql.streaming.minBatchesToRetain 配置以外且在文件保留时间内// 配置项参考 第4节 解决方案配置说明deleteExpiredLog(batchId) }batchAdded}

3 分析 checkpointLocation 目录内容

目前 checkpointLocation 内容主要包含以下几个目录(子小节中逐个介绍目录数据来源及功能性)

  • offsets
  • commits
  • metadata
  • sources
  • sinks

3.1 offsets 目录

记录每个批次中的偏移量。为了保证给定的批次始终包含相同的数据,在处理数据前将其写入此日志记录。
此日志中的第 N 条记录表示当前正在已处理,第 N-1 个条目指示哪些偏移已处理完成。

// StreamExecution 类中声明了 OffsetSeqLog 变量进行操作
val offsetLog = new OffsetSeqLog(sparkSession, checkpointFile("offsets"))// 该日志示例内容如下,文件路径=checkpointLocation/offsets/560504
v1
{"batchWatermarkMs":0,"batchTimestampMs":1574315160001,"conf":{"spark.sql.streaming.stateStore.providerClass":"org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider","spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion":"2","spark.sql.streaming.multipleWatermarkPolicy":"min","spark.sql.streaming.aggregation.stateFormatVersion":"2","spark.sql.shuffle.partitions":"200"}}
{"game_dc_real_normal":{"17":279843310,"8":318732102,"11":290676804,"2":292352132,"5":337789356,"14":277147358,"13":334833752,"4":319279439,"16":314038811,"7":361740056,"1":281418138,"10":276872234,"9":244398684,"3":334708621,"12":290208334,"15":267180971,"6":296588360,"0":350011707}}

3.2 commitLog 目录

记录已完成的批次,重启任务检查完成的批次与 offsets 批次记录比对,确定接下来运行的批次

// StreamExecution 类中声明了 CommitLog 变量进行操作
val commitLog = new CommitLog(sparkSession, checkpointFile("commits"))// 该日志示例内容如下,文件路径=checkpointLocation/commits/560504
v1
{"nextBatchWatermarkMs":0}

3.3 metadata 目录

metadata 与整个查询关联的元数据,目前仅保留当前job id

// StreamExecution 类中声明了 StreamMetadata 变量进行操作,策略如下:/** Metadata associated with the whole query */protected val streamMetadata: StreamMetadata = {val metadataPath = new Path(checkpointFile("metadata"))val hadoopConf = sparkSession.sessionState.newHadoopConf()StreamMetadata.read(metadataPath, hadoopConf).getOrElse {val newMetadata = new StreamMetadata(UUID.randomUUID.toString)StreamMetadata.write(newMetadata, metadataPath, hadoopConf)newMetadata}}// 该日志示例内容如下,文件路径=checkpointLocation/metadata
{"id":"5314beeb-6026-485b-947a-cb088a9c9bac"}

3.4 sources 目录

sources 目录为数据源(Source)时各个批次读取详情

3.5 sinks 目录

sinks 目录为数据接收端(Sink)时批次的写出详情

例如: es 作为 sink 时,内容如下

目前 Es 支持配置自定义写出目录,如果未配置写入 checkpointLocation/sinks/ 目录,参考SparkSqlStreamingConfigs

文件路径=checkpointLocation/sinks/elasticsearch/560504
v1
{"taskId":0,"execTimeMillis":1574302020143,"resource":"rs_real_{app}.{dt}","records":220}
{"taskId":1,"execTimeMillis":1574302020151,"resource":"rs_real_{app}.{dt}","records":221}
{"taskId":2,"execTimeMillis":1574302020154,"resource":"rs_real_{app}.{dt}","records":219}
{"taskId":3,"execTimeMillis":1574302020151,"resource":"rs_real_{app}.{dt}","records":221}
{"taskId":4,"execTimeMillis":1574302020154,"resource":"rs_real_{app}.{dt}","records":220} 


例如: 文件类型作为 sink,默认写出到各个 $path/_spark_metadata 目录下 ,参考 FileStreamSink

hdfs 写出时内容为,文件路径=$path/_spark_metadata/560504
v1
{"path":"hdfs://xx:8020/$path/1.c000.snappy.parquet","size":8937,"isDir":false,"modificationTime":1574321763584,"blockReplication":2,"blockSize":134217728,"action":"add"}
{"path":"hdfs://xx:8020/$path/2.c000.snappy.parquet","size":11786,"isDir":false,"modificationTime":1574321763596,"blockReplication":2,"blockSize":134217728,"action":"add"}

4 解决方案

根据实际业务情况合理调整日志输出参数(配置见4.1/4.2说明):

  • 关闭日志输出
  • 控制保留并可以恢复的最小批次数量且减小日志文件保留时间
  • 调整日志文件合并阈值

无论如何调整参数,.compact(合并的文件)大小会一直增长,目前关闭可以解决。调整其他阈值可减小任务出现耗时情况次数。
针对该问题已提交给官方 SPARK-29995尝试解决

4.1 File 作为数据源或者数据接收端

  • spark.sql.streaming.minBatchesToRetain (默认100) 保留并可以恢复的最小批次数量
  • spark.sql.streaming.commitProtocolClass 默认:org.apache.spark.sql.execution.streaming.ManifestFileCommitProtocol 合并实现类,其余支持实现参考FileCommitProtocol实现类

fileSource 数据源端:配置在 FileStreamSourceLog 引用

  • spark.sql.streaming.fileSource.log.deletion (默认true),删除过期日志文件
  • spark.sql.streaming.fileSource.log.compactInterval (默认10),日志文件合并阈值
  • spark.sql.streaming.fileSource.log.cleanupDelay (默认10m),日志文件保留时间

fileSink 接收端:配置在 FileStreamSinkLog 引用

  • spark.sql.streaming.fileSink.log.deletion (默认true),删除过期日志文件CompactibleFileStreamLog
  • spark.sql.streaming.fileSink.log.compactInterval (默认10),日志文件合并阈值
  • spark.sql.streaming.fileSink.log.cleanupDelay (默认10m),日志文件保留时间

4.2 Elasticsearch 作为接收端

elasticsearch-spark 官方文档,es 官方重写变量命名及赋值方式,参考EsSinkMetadataLog

  • es.spark.sql.streaming.sink.log.enabled(默认true) 启用或禁用流作业的提交日志。默认情况下,该日志处于启用状态,并且具有相同批次ID的输出批次将被跳过,以避免重复写入。设置false为时,将禁用提交日志,并且所有输出都将发送到Elasticsearch,无论它们是否在先前的执行中已发送。
  • es.spark.sql.streaming.sink.log.path 设置存储此流查询的日志数据的位置。如果未设置此值,那么Elasticsearch接收器会将其提交日志存储在中给定的路径下checkpointLocation。任何与HDFS客户端兼容的URI都是可以接受的。
  • es.spark.sql.streaming.sink.log.cleanupDelay(默认10m) 提交日志通过Spark的HDFS客户端进行管理。一些与HDFS兼容的文件系统(例如Amazon的S3)以异步方式传播文件更改。为了解决这个问题,在压缩了一组日志文件之后,客户端将等待此时间,然后再清理旧文件。
  • es.spark.sql.streaming.sink.log.deletion(默认true) 确定日志是否应删除不再需要的旧日志。提交每个批次后,客户端将检查是否有已压缩且可以安全删除的提交日志。如果设置为false,日志将跳过此清理步骤,为每个批次保留一个提交文件。
  • es.spark.sql.streaming.sink.log.compactInterval(默认10) 设置压缩日志文件之前要处理的批次数。默认情况下,每10批提交日志将被压缩为一个包含所有以前提交的批ID的文件。

这篇关于Spark-StructuredStreaming checkpointLocation分析、优化耗时的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027168

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模