2024年5月2日 Go生态洞察:Go 1.22中的安全随机性

2024-06-03 12:20

本文主要是介绍2024年5月2日 Go生态洞察:Go 1.22中的安全随机性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁

🦄 博客首页——🐅🐾猫头虎的博客🎐

专栏链接

🔗 精选专栏

  • 《面试题大全》 — 面试准备的宝典!
  • 《IDEA开发秘籍》 — 提升你的IDEA技能!
  • 《100天精通鸿蒙》 — 从Web/安卓到鸿蒙大师!
  • 《100天精通Golang(基础入门篇)》 — 踏入Go语言世界的第一步!
  • 《100天精通Go语言(精品VIP版)》 — 踏入Go语言世界的第二步!

领域矩阵

🌐 猫头虎技术领域矩阵
深入探索各技术领域,发现知识的交汇点。了解更多,请访问:

  • 猫头虎技术矩阵
  • 新矩阵备用链接

学会Golang语言,畅玩云原生,走遍大小厂~💐


在这里插入图片描述

文章目录

  • 2024年5月2日 Go生态洞察:Go 1.22中的安全随机性
    • 摘要 🌟
    • 引言 🚀
    • 正文 🌐
      • 统计随机性 🧩
        • Unix中的随机数生成器 🔍
      • Go 1生成器 ⚙️
      • PCG生成器 🌟
      • 加密随机性 🔐
      • ChaCha8Rand生成器 🚀
      • 性能比较 📊
    • 总结 📚
    • 参考资料 🔗
    • 下一篇预告 📢
    • QA 环节 🙋
    • 🐅🐾猫头虎建议Go程序员必备技术栈一览表📖:
  • 原创声明

  • 原创作者: 猫头虎

  • 作者wx: Libin9iOak

  • 作者公众号: 猫头虎技术团队

在这里插入图片描述

2024年5月2日 Go生态洞察:Go 1.22中的安全随机性

摘要 🌟

作为一个技术自媒体博主,我是猫头虎,今天我们来探讨Go 1.22在math/rand和crypto/rand之间的改进,如何通过使用加密随机数源改进了Go的随机性,减少了开发者误用math/rand而导致的安全隐患。📚🔍

引言 🚀

计算机并不随机。硬件设计师们非常努力地确保计算机每次都能以相同的方式运行每个程序。然而,当程序需要随机数时,这就需要额外的努力。传统上,计算机科学家和编程语言将随机数分为两种:统计随机数和加密随机数。在Go中,这分别由math/rand和crypto/rand提供。本文将探讨Go 1.22如何通过在math/rand中使用加密随机数源,使这两者更紧密地结合在一起,带来更好的随机性,并在开发者误用math/rand时减少了损害。

正文 🌐

统计随机性 🧩

统计随机数通过基本的统计测试通常适用于仿真、采样、数值分析、非加密的随机算法、随机测试、输入洗牌和随机指数回退。非常基本、易于计算的数学公式在这些用例中表现良好。然而,这些方法非常简单,知道使用的算法的观察者通常可以在看到足够的值后预测序列的其余部分。

Unix中的随机数生成器 🔍

几乎所有编程环境都提供了生成统计随机数的机制,这可以追溯到C语言和Research Unix第三版(V3),该版本增加了一对函数:srand和rand。以下是用现代C语言翻译的生成器源代码:

uint16 ranx;void srand(uint16 seed) {ranx = seed;
}int16 rand(void) {ranx = 13077 * ranx + 6925;return ranx & ~0x8000;
}

调用srand函数用单个整数种子对生成器进行播种,rand函数返回生成器的下一个数值。这种生成器被称为线性同余生成器(LCGs),尽管有已知的问题,但它们仍被广泛使用。

Go 1生成器 ⚙️

Go 1中的math/rand使用了一种线性反馈移位寄存器生成器。其内部状态是607个uint64组成的切片。生成下一个随机数的算法如下:

func (r *rngSource) Uint64() uint64 {r.tap--if r.tap < 0 {r.tap += len(r.vec)}r.feed--if r.feed < 0 {r.feed += len(r.vec)}x := r.vec[r.feed] + r.vec[r.tap]r.vec[r.feed] = xreturn uint64(x)
}

生成下一个数值的过程非常便宜:两个减法、两个条件加法、两个加载、一个加法和一个存储。然而,由于生成器直接返回其内部状态向量中的一个切片元素,读取607个值即可完全暴露其状态,从而可以预测所有未来的值。

PCG生成器 🌟

在math/rand/v2中,我们使用了Melissa O’Neill在2014年发布的PCG算法。以下是PCG生成器的代码示例:

const (pcgM = 0x2360ed051fc65da44385df649fccf645pcgA = 0x5851f42d4c957f2d14057b7ef767814f
)type PCG struct {x uint128
}func (p *PCG) Uint64() uint64 {p.x = p.x * pcgM + pcgAreturn scramble(p.x)
}func scramble(x uint128) uint64 {hi, lo := uint64(x >> 64), uint64(x)hi ^= hi >> 32hi *= 0xda942042e4dd58b5hi ^= hi >> 48hi *= lo | 1
}

PCG生成器使用更少的状态,且对初始值的敏感性较低,能通过许多统计测试,是一种理想的统计生成器。

加密随机性 🔐

加密随机数需要在实际中完全不可预测,即使观察者知道它们的生成方式并且已经观察到生成的任意数量的值。提供加密随机性的最终任务是操作系统,它可以从物理设备中收集真正的随机性,如鼠标、键盘、磁盘和网络的时序,以及CPU本身测量的电噪声。

ChaCha8Rand生成器 🚀

我们的新生成器ChaCha8Rand基于Daniel J. Bernstein的ChaCha流密码,是math/rand/v2中的rand.ChaCha8的实现。其关键特性如下:

  1. ChaCha8Rand使用32字节种子,作为ChaCha8的密钥。
  2. ChaCha8生成64字节的块,并将块作为16个uint32进行处理。
  3. 每生成16个块,ChaCha8Rand将最后32字节作为下一个16个块的密钥,实现了前向安全性。

以下是ChaCha8Rand的实现示例:

func scramble(x uint128) uint64 {hi, lo := uint64(x>>64), uint64(x)hi ^= hi >> 32hi *= 0xda942042e4dd58b5hi ^= hi >> 48hi *= lo | 1
}

性能比较 📊

ChaCha8Rand在性能上稍逊于Go 1生成器,但在现代服务器上差异不超过3ns,大多数程序不会因此成为瓶颈,而许多程序将受益于改进的安全性。

生成器Uint64速度(ns)N(1000)速度(ns)
Go 1生成器1.83.2
PCG生成器2.12.4
ChaCha8Rand2.42.7

总结 📚

Go 1.22通过加强math/rand,使程序更安全而无需更改代码。这是Go持续确保程序默认安全的一小步。

参考资料 🔗

  • Russ Cox, Filippo Valsorda. Secure Randomness in Go 1.22. May 2, 2024.

下一篇预告 📢

下一篇文章将探讨如何在Go 1.22中确保随机数生成器的安全性,敬请期待!


知识点说明
统计随机性Unix和Go 1生成器的分析
PCG生成器新算法及其优点
加密随机性操作系统的角色及实现
ChaCha8Rand新生成器的详细实现
性能比较三种生成器的性能对比

QA 环节 🙋

Q1: 为什么需要ChaCha8Rand生成器?

A1: ChaCha8Rand生成器结合了统计和加密随机性的优点,提高了安全性,并减少了误用带来的安全隐患。

Q2: PCG生成器有哪些优点?

A2: PCG生成器使用更少的状态,对初始值不敏感,通过了许多统计测试,是理想的统计生成器。

Q3: 如何在程序中使用ChaCha8Rand生成器?

A3: 可以直接创建rand.ChaCha8实例,或使用math/rand/v2中的顶层函数。

通过这篇博客,希望大家能够更好地理解和应用Go 1.22中的安全随机性。感谢阅读!👋

在这里插入图片描述

🐅🐾猫头虎建议Go程序员必备技术栈一览表📖:

☁️🐳 Go语言开发者必备技术栈☸️:
🐹 GoLang | 🌿 Git | 🐳 Docker | ☸️ Kubernetes | 🔧 CI/CD | ✅ Testing | 💾 SQL/NoSQL | 📡 gRPC | ☁️ Cloud | 📊 Prometheus | 📚 ELK Stack


🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🐅🐾🍁🐥

原创声明


  • 原创作者: 猫头虎

  • 作者wx: Libin9iOak
    在这里插入图片描述

  • 作者公众号: 猫头虎技术团队

在这里插入图片描述

学习复习Go生态

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入猫头虎领域矩阵。一起探索科技的未来,洞察Go生态,共同成长。

🔗 猫头虎社群 | 🔗 Go语言VIP专栏| 🔗 GitHub 代码仓库 | 🔗 Go生态洞察专栏

这篇关于2024年5月2日 Go生态洞察:Go 1.22中的安全随机性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026977

相关文章

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Go之errors.New和fmt.Errorf 的区别小结

《Go之errors.New和fmt.Errorf的区别小结》本文主要介绍了Go之errors.New和fmt.Errorf的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考... 目录error的基本用法1. 获取错误信息2. 在条件判断中使用基本区别1.函数签名2.使用场景详细对

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Go中select多路复用的实现示例

《Go中select多路复用的实现示例》Go的select用于多通道通信,实现多路复用,支持随机选择、超时控制及非阻塞操作,建议合理使用以避免协程泄漏和死循环,感兴趣的可以了解一下... 目录一、什么是select基本语法:二、select 使用示例示例1:监听多个通道输入三、select的特性四、使用se

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)