Python | 自动探索性数据分析(EDA)库SweetViz

2024-06-03 04:20

本文主要是介绍Python | 自动探索性数据分析(EDA)库SweetViz,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SweetViz是一个开放源代码Python库,主要用于生成精美的高密度可视化文件,启动探索性数据分析(EDA),输出为完全独立的HTML应用程序。

探索性数据分析(EDA)是分析和总结数据集主要特征的过程,通常旨在了解数据中的潜在模式,关系和趋势。

SweetViz库的特点

主要包括以下几个方面:

  • 快速生成可视化图表:通过仅两行代码或更少,SweetViz可以快速生成美观且高密度的可视化图表,便于进行探索性数据分析(EDA)。
  • 目标值分析:帮助用户分析目标特征,例如如何将目标值(布尔值或数字值)与其他特征关联起来。
  • 可视化和比较数据集:支持对不同的数据集(例如训练与测试数据)进行可视化及比较分析,也可以对同个数据集的不同类别进行比较。
  • 混合型关联分析:无缝集成了数字(皮尔森相关性)、分类(不确定性系数)和分类数字(相关性)数据类型的关联,以提供所有数据类型的最大信息。
  • 独立HTML应用程序:SweetViz的输出是一个完全独立的HTML应用程序,用户可以轻松地分享和查看生成的图表和报告。

总的来说,SweetViz库旨在为用户提供一种快速、简便的方法来进行数据分析和可视化,帮助用户更好地理解数据和特征之间的关系。

安装

首先,我们将使用下面给出的pip install命令安装SweetViz库:

pip install sweetviz

导入必要的库

# import the required libraries 
import pandas as pd
import sweetviz as sv
from sklearn.model_selection import train_test_splitprint("SweetViz Version : {}".format(sv.__version__))

输出

SweetViz Version : 2.3.1

加载数据集

df = pd.read_csv('california_housing.csv')
df.info()

输出

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 9 columns):#   Column              Non-Null Count  Dtype  
---  ------              --------------  -----  0   longitude           3000 non-null   float641   latitude            3000 non-null   float642   housing_median_age  3000 non-null   float643   total_rooms         3000 non-null   float644   total_bedrooms      3000 non-null   float645   population          3000 non-null   float646   households          3000 non-null   float647   median_income       3000 non-null   float648   median_house_value  3000 non-null   float64
dtypes: float64(9)
memory usage: 211.1 KB

生成分析报告

为了生成报告,我们有3个函数:

  • analyze() 用于单个数据集
  • compare() 用于比较2个数据集(例如,Test与Train)
  • compare_intra() 用于比较一个数据集中某个选项的数据集的不同

这里,我们有一个单一的数据集,所以在这个时候我们将使用analyze()函数;

report = sv.analyze([df, 'Train'], target_feat='median_house_value')

一旦我们创建了我们的报告对象,然后简单地将其传递给两个’show’函数之一:
show_html()或show_ notebook()
show_html()函数将在给定的文件路径下创建并保存一个HTML报告(HTML页面),
show_notebook()函数将报表嵌入到Notebook中。

# show the report in a form of an HTML file
report.show_html('Report.html')

在这里插入图片描述

比较训练和测试数据集

# Split the dataset 
train_df, test_df = train_test_split(df, train_size=0.75)
# compare the dataset
compare = sv.compare(source=train_df, compare=test_df, target_feat="median_house_value")# Show the result
compare.show_html('Compare.html')

在这里插入图片描述
将鼠标悬停在报告左侧导航栏中的“Associations”按钮上,将在报告左侧显示关联图。关联图显示数据集中所有特征对之间的成对关系,每个点表示两个特征的唯一组合。点的大小和颜色表示两个特征之间关联的强度和方向,较大和较暗的点表示较强的正关联,较小和较亮的点表示较弱或负关联。

在这里插入图片描述
比较一个数据集中两个不同子群

# import the necessary libraries
import sweetviz as sv
from sklearn.datasets import load_breast_cancer# Load the dataset
cancer = load_breast_cancer(as_frame=True)
# dataframe
df = cancer.frame# Define the FeatureConfig object to force 
# the target feature to be numerical
my_feature_config = sv.FeatureConfig(force_num=['target'])# Create a boolean array to use as the grouping condition
condition_series = df['target'] == 0# Analyze the dataset with the specified FeatureConfig object 
# and grouping condition
my_report = sv.compare_intra(df, condition_series, ['malignant', 'benign'], feat_cfg=my_feature_config, target_feat='target')# Generate and display the report
my_report.show_html()

在这里插入图片描述

这篇关于Python | 自动探索性数据分析(EDA)库SweetViz的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025996

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部