Python | 自动探索性数据分析(EDA)库SweetViz

2024-06-03 04:20

本文主要是介绍Python | 自动探索性数据分析(EDA)库SweetViz,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SweetViz是一个开放源代码Python库,主要用于生成精美的高密度可视化文件,启动探索性数据分析(EDA),输出为完全独立的HTML应用程序。

探索性数据分析(EDA)是分析和总结数据集主要特征的过程,通常旨在了解数据中的潜在模式,关系和趋势。

SweetViz库的特点

主要包括以下几个方面:

  • 快速生成可视化图表:通过仅两行代码或更少,SweetViz可以快速生成美观且高密度的可视化图表,便于进行探索性数据分析(EDA)。
  • 目标值分析:帮助用户分析目标特征,例如如何将目标值(布尔值或数字值)与其他特征关联起来。
  • 可视化和比较数据集:支持对不同的数据集(例如训练与测试数据)进行可视化及比较分析,也可以对同个数据集的不同类别进行比较。
  • 混合型关联分析:无缝集成了数字(皮尔森相关性)、分类(不确定性系数)和分类数字(相关性)数据类型的关联,以提供所有数据类型的最大信息。
  • 独立HTML应用程序:SweetViz的输出是一个完全独立的HTML应用程序,用户可以轻松地分享和查看生成的图表和报告。

总的来说,SweetViz库旨在为用户提供一种快速、简便的方法来进行数据分析和可视化,帮助用户更好地理解数据和特征之间的关系。

安装

首先,我们将使用下面给出的pip install命令安装SweetViz库:

pip install sweetviz

导入必要的库

# import the required libraries 
import pandas as pd
import sweetviz as sv
from sklearn.model_selection import train_test_splitprint("SweetViz Version : {}".format(sv.__version__))

输出

SweetViz Version : 2.3.1

加载数据集

df = pd.read_csv('california_housing.csv')
df.info()

输出

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 9 columns):#   Column              Non-Null Count  Dtype  
---  ------              --------------  -----  0   longitude           3000 non-null   float641   latitude            3000 non-null   float642   housing_median_age  3000 non-null   float643   total_rooms         3000 non-null   float644   total_bedrooms      3000 non-null   float645   population          3000 non-null   float646   households          3000 non-null   float647   median_income       3000 non-null   float648   median_house_value  3000 non-null   float64
dtypes: float64(9)
memory usage: 211.1 KB

生成分析报告

为了生成报告,我们有3个函数:

  • analyze() 用于单个数据集
  • compare() 用于比较2个数据集(例如,Test与Train)
  • compare_intra() 用于比较一个数据集中某个选项的数据集的不同

这里,我们有一个单一的数据集,所以在这个时候我们将使用analyze()函数;

report = sv.analyze([df, 'Train'], target_feat='median_house_value')

一旦我们创建了我们的报告对象,然后简单地将其传递给两个’show’函数之一:
show_html()或show_ notebook()
show_html()函数将在给定的文件路径下创建并保存一个HTML报告(HTML页面),
show_notebook()函数将报表嵌入到Notebook中。

# show the report in a form of an HTML file
report.show_html('Report.html')

在这里插入图片描述

比较训练和测试数据集

# Split the dataset 
train_df, test_df = train_test_split(df, train_size=0.75)
# compare the dataset
compare = sv.compare(source=train_df, compare=test_df, target_feat="median_house_value")# Show the result
compare.show_html('Compare.html')

在这里插入图片描述
将鼠标悬停在报告左侧导航栏中的“Associations”按钮上,将在报告左侧显示关联图。关联图显示数据集中所有特征对之间的成对关系,每个点表示两个特征的唯一组合。点的大小和颜色表示两个特征之间关联的强度和方向,较大和较暗的点表示较强的正关联,较小和较亮的点表示较弱或负关联。

在这里插入图片描述
比较一个数据集中两个不同子群

# import the necessary libraries
import sweetviz as sv
from sklearn.datasets import load_breast_cancer# Load the dataset
cancer = load_breast_cancer(as_frame=True)
# dataframe
df = cancer.frame# Define the FeatureConfig object to force 
# the target feature to be numerical
my_feature_config = sv.FeatureConfig(force_num=['target'])# Create a boolean array to use as the grouping condition
condition_series = df['target'] == 0# Analyze the dataset with the specified FeatureConfig object 
# and grouping condition
my_report = sv.compare_intra(df, condition_series, ['malignant', 'benign'], feat_cfg=my_feature_config, target_feat='target')# Generate and display the report
my_report.show_html()

在这里插入图片描述

这篇关于Python | 自动探索性数据分析(EDA)库SweetViz的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025996

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数