【文档智能】符合人类阅读顺序的文档模型-LayoutReader原理及权重开源

本文主要是介绍【文档智能】符合人类阅读顺序的文档模型-LayoutReader原理及权重开源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

阅读顺序检测旨在捕获人类读者能够自然理解的单词序列。现有的OCR引擎通常按照从上到下、从左到右的方式排列识别到的文本行,但这并不适用于某些文档类型,如多栏模板、表格等。LayoutReader模型使用seq2seq模型捕获文本和布局信息,用于阅读顺序预测,在实验中表现出色,并显著提高了开源和商业OCR引擎在文本行排序方面的表现。

一、LayoutReader模型

1.1 编码器(Encoder)

LayoutReader使用LayoutLM的布局模型作为编码器。在编码阶段,LayoutReader将源序列和目标序列打包成一个连续的输入序列,并设计了自注意力掩码来控制token之间的可见性。具体来说,LayoutReader允许源序列中的标记相互关注,同时阻止目标序列中的标记关注右侧上下文。

自注意力掩码 M M M的设计:
M i , j = { 1 if  i < j or  i , j ∈ src 0 otherwise M_{i,j} = \begin{cases} 1 & \text{if } i < j \text{ or } i, j \in \text{src} \\ 0 & \text{otherwise} \end{cases} Mi,j={10if i<j or i,jsrcotherwise
其中, i i i j j j是打包输入序列中的索引,可能来自源或目标序列; i , j ∈ s r c i, j ∈ src i,jsrc表示两个标记都来自源序列。

1.2 解码器(Decoder)

在解码阶段,由于源序列和目标序列是重新排序的序列,预测候选可以被限制在源序列内。因此,模型被要求预测源序列中的索引。概率计算如下:

其中, i i i是源序列中的索引;$e_i 和 和 e_j 分别是源序列的第 分别是源序列的第 分别是源序列的第i 个和第 个和第 个和第j 个输入嵌入 ( i n p u t e m b e d d i n g s ) ; 个输入嵌入(input embeddings); 个输入嵌入(inputembeddings)h_k 是第 是第 是第k 步的隐藏状态 ( h i d d e n s t a t e s ) ; 步的隐藏状态(hidden states); 步的隐藏状态(hiddenstates)b_k 是第 是第 是第k$步的偏置(bias)。

二、实验

进行了三个实验来评估LayoutReader在ReadingBank上的表现,包括阅读顺序检测、输入顺序研究和对OCR引擎的适应性

实验结果表明,LayoutReader在阅读顺序检测任务上超越了其他基线方法,并且可以显著提高OCR引擎的文本行排序。

三、非官方开源权重

  • huggingface:https://huggingface.co/yujunhuinlp/LayoutReader-only-layout-large

  • github code(only layout):https://github.com/yujunhuics/LayoutReader

  • bbox排序

    import torch
    from model import LayoutLMv3ForBboxClassification
    from collections import defaultdictCLS_TOKEN_ID = 0
    UNK_TOKEN_ID = 3
    EOS_TOKEN_ID = 2def BboxesMasks(boxes):bbox = [[0, 0, 0, 0]] + boxes + [[0, 0, 0, 0]]input_ids = [CLS_TOKEN_ID] + [UNK_TOKEN_ID] * len(boxes) + [EOS_TOKEN_ID]attention_mask = [1] + [1] * len(boxes) + [1]return {"bbox": torch.tensor([bbox]),"attention_mask": torch.tensor([attention_mask]),"input_ids": torch.tensor([input_ids]),}def decode(logits, length):logits = logits[1: length + 1, :length]orders = logits.argsort(descending=False).tolist()ret = [o.pop() for o in orders]while True:order_to_idxes = defaultdict(list)for idx, order in enumerate(ret):order_to_idxes[order].append(idx)order_to_idxes = {k: v for k, v in order_to_idxes.items() if len(v) > 1}if not order_to_idxes:breakfor order, idxes in order_to_idxes.items():idxes_to_logit = {}for idx in idxes:idxes_to_logit[idx] = logits[idx, order]idxes_to_logit = sorted(idxes_to_logit.items(), key=lambda x: x[1], reverse=True)for idx, _ in idxes_to_logit[1:]:ret[idx] = orders[idx].pop()return retdef layoutreader(bboxes):inputs = BboxesMasks(bboxes)logits = model(**inputs).logits.cpu().squeeze(0)orders = decode(logits, len(bboxes))return ordersif __name__ == '__main__':bboxes = [[584, 0, 595, 1], [35, 120, 89, 133],[35, 140, 75, 152]]model_path = ""model = LayoutLMv3ForBboxClassification.from_pretrained()print(layoutreader(bboxes))
    # [1, 2, 0]
    
  • 效果样例

参考文献

  • paper:LayoutReader: Pre-training of Text and Layout for Reading Order Detection,https://arxiv.org/pdf/2108.11591
  • Official code:https://github.com/microsoft/unilm/tree/master/layoutreader

这篇关于【文档智能】符合人类阅读顺序的文档模型-LayoutReader原理及权重开源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025450

相关文章

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消