综合交易模型--雪球跟单参数说明支持qmt,同花顺

2024-06-02 22:52

本文主要是介绍综合交易模型--雪球跟单参数说明支持qmt,同花顺,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

经过测试,目前完成了这个策略。支持多策略,支持全市场,包括股票,etf,可转债

全部的参数

图片

{    "雪球跟单":"跟单原理",    "原理":"比重变大默认买入,变小默认卖出,持股不追加,支持多策略跟单",    "雪球cookie":"cookiesu=241715400714727; device_id=a3ef10a376ef5247ffa076b3f60cda63; smidV2=20240511121735f94708a388b3849549dd32f49888adb60042a1a6f570c88a0; remember=1; xq_is_login=1; u=1342909666; s=cb127hrtpz; bid=f1b5e01be977a7023f9ec859cdf24ad4_lw1xly5z; __utmz=1.1715421398.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); xq_a_token=8d2185ec88fc34490976cbe2eb4caf7d6961e32e; xqat=8d2185ec88fc34490976cbe2eb4caf7d6961e32e; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOjEzNDI5MDk2NjYsImlzcyI6InVjIiwiZXhwIjoxNzE5MTk1Mzc4LCJjdG0iOjE3MTY2MDMzNzgxMjIsImNpZCI6ImQ5ZDBuNEFadXAifQ.Sjy6h4gQ8nX3P1QvfN8d1jaozlDCQ_z4fPU1gnU97hmcEbDlAQE9tZ5_SAB2uVHJgUvmXEKKlHPWhNHnipI404hz5I0AxAXAod1nAAXUu9xyRlpN5HvISph3snFPInKOrDYas6Pf7mtunhHXHvdiCtt0j__P2hOyA0VevN3Mqc34a6NJDh2yftTIXWpDVAI03hHo1izuEuA9Reld-7OX8H_KGfFGbIN0frJFfvR_KiTadHK_hJK4LafSetP71-RC1qgouIcB2Eb4tS_IANZ8G-ETk9Y-6DW2_SwffzEUiCNscRvGmzCMy9XPWA5413QphlGdfbgk2rN7enArOVx3Cw; xq_r_token=d8d877c6634c1dccc7472835539149f69c6f9f70; Hm_lvt_1db88642e346389874251b5a1eded6e3=1716392246,1716473979,1716554527,1716603379; acw_tc=276077ab17166051880926379e31d55708918c25a7b1b7778b05ec078e0cb6; __utma=1.694453535.1715421398.1715524198.1716605549.4; __utmc=1; __utmt=1; .thumbcache_f24b8bbe5a5934237bbc0eda20c1b6e7=yLJiLZESXni8VXn3zlUOJUOfp16pud99AQIv/v5OtCn72W3NDQ3kBY3tY4OxOBlzf3eoH+ByDMs2DcwGjEhdMw%3D%3D; __utmb=1.2.10.1716605549; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1716605925",    "组合名称":["实验"],    "组合id":["ZH3368671"],    "不同策略间隔更新时间":0.05,    "同步持股说明":"同步持股就是买入目前的持股,不然就同步成交",    "资金模式":"雪球",    "资金模式说明":"雪球/自定义",    "雪球资金设置":"设置**********************",    "账户跟单比例":0.5,    "自定义资金设置":"设置————————下面设置分析配置是参考,保持和分析配置里面一样————————————————",    "交易模式":"金额",    "固定交易资金":10000,    "持有金额限制":10000,    "固定交易数量":100,    "持有限制":100,    "持股限制":10,    "下单交易模式":"立马下单",    "下单交易模式说明":"立马下单/通过综合交易模型"
}

雪球cookie直接账户的cookie自己获取

组合id支持多组合,多个组合用逗号隔开比如[1,2,3]

重点在下, 的交易模式

"同步持股说明":"同步持股就是买入目前的持股,不然就同步成交",    "资金模式":"雪球",    "资金模式说明":"雪球/自定义",    "雪球资金设置":"设置**********************",    "账户跟单比例":0.5,    "自定义资金设置":"设置————————下面设置分析配置是参考,保持和分析配置里面一样————————————————",    "交易模式":"金额",    "固定交易资金":10000,    "持有金额限制":10000,    "固定交易数量":100,    "持有限制":100,    "持股限制":10,    "下单交易模式":"立马下单",    "下单交易模式说明":"立马下单/通过综合交易模型"

资金模式 雪球完全按雪球的模式交易,按比例进行调整仓位,这个模式好完全自带匹配账户资金,比如你账户有10万买入1%就是1000,比如你账户有100万,调整1%就是自动匹配账户自己,下面的就自定义资金的,"下单交易模式":"立马下单",直接下单不用排队,速度非常的快,还在直接看源代码快​​​​​​​

def start_trader_on(self):        '''        开始下单        '''        with open(r'{}\雪球跟单设置.json'.format(self.path),encoding='utf-8') as f:            com=f.read()        text=json.loads(com)        df=pd.read_excel(r'{}\下单股票池\下单股票池.xlsx'.format(self.path))        try:            del df['Unnamed: 0']        except:            pass        #资金模式        cash_models=text['资金模式']        #下单模式        trader_models=text['下单交易模式']        #自定义资金设置        data_type=text['交易模式']        value=text['固定交易资金']        limit_value=text['持有金额限制']        amount1=text['固定交易数量']        limit_amount=text['持股限制']        if df.shape[0]>0:            df['证券代码']=df['证券代码'].astype(str)            #print(df['证券代码'])            df['证券代码']=df['证券代码'].apply(lambda x: '0'*(6-len(str(x)))+str(x))            if cash_models=='雪球' and trader_models=='通过综合交易模型':                buy_df=df[df['交易方向']=='buy']                if buy_df.shape[0]>0:                    buy_df=buy_df[['证券代码','证券名称','自动价格','价格','交易类型','数量','交易状态']]                    buy_df.to_excel(r'自定义买入股票\自定义买入股票.xlsx')                else:                    print('{} {} 没有买入股票'.format(cash_models,trader_models))                sell_df=df[df['交易方向']=='sell']                if sell_df.shape[0]>0:                    sell_df=sell_df[['证券代码','证券名称','自动价格','价格','交易类型','数量','交易状态']]                    sell_df.to_excel(r'自定义卖出股票\自定义卖出股票.xlsx')                else:                    print('{} {} 没有卖出股票'.format(cash_models,trader_models))            elif cash_models=='自定义' and trader_models=='通过综合交易模型':                buy_df=df[df['交易方向']=='buy']                if buy_df.shape[0]>0:                    buy_df=buy_df[['证券代码','证券名称','交易状态']]                    buy_df.to_excel(r'买入股票\买入股票.xlsx')                else:                    print('{} {} 没有买入股票'.format(cash_models,trader_models))                sell_df=df[df['交易方向']=='sell']                if sell_df.shape[0]>0:                    sell_df=sell_df[['证券代码','证券名称','交易状态']]                    sell_df.to_excel(r'卖出股票\卖出股票.xlsx')                else:                    print('{} {} 没有卖出股票'.format(cash_models,trader_models))            #先卖在买            elif cash_models=='雪球' and trader_models=='立马下单':                sell_df=df[df['交易方向']=='sell']                if sell_df.shape[0]>0:                    for stock,amount in zip(sell_df['证券代码'],sell_df['数量']):                        try:                            price=self.data.get_spot_data(stock=stock)['最新价']                            self.trader.sell(security=stock,price=price,amount=amount)                            print('{} {} 卖出 股票{} 数量{} 价格{}'.format(cash_models,trader_models,stock,amount,price))                        except Exception as e:                            print(e)                            print(print('{} {} 卖出 股票{} 有问题'.format(cash_models,trader_models,stock)))                else:                    print('{} {} 没有卖出股票'.format(cash_models,trader_models))                buy_df=df[df['交易方向']=='buy']                if buy_df.shape[0]>0:                    for stock,amount in zip(buy_df['证券代码'],buy_df['数量']):                        try:                            price=self.data.get_spot_data(stock=stock)['最新价']                            self.trader.buy(security=stock,price=price,amount=amount)                            print('{} {} 买入 股票{} 数量{} 价格{}'.format(cash_models,trader_models,stock,amount,price))                        except Exception as e:                            print(e)                            print(print('{} {} 买入 股票{} 有问题'.format(cash_models,trader_models,stock)))                else:                    print('{} {} 没有买入股票'.format(cash_models,trader_models))            #先卖在买            elif cash_models=='自定义' and trader_models=='立马下单':                sell_df=df[df['交易方向']=='sell']                if sell_df.shape[0]>0:                    for stock in sell_df['证券代码'].tolist():                        try:                            price=self.data.get_spot_data(stock=stock)['最新价']                            trader_type,amount,price=self.trader.check_av_target_trader(data_type=data_type,trader_type='sell',                                        amount=amount1,limit_volume=limit_amount,value=value,limit_value=limit_value,                                        stock=stock,price=price)                            if trader_type=='sell':                                self.trader.sell(security=stock,price=price,amount=amount)                                print('{} {} 卖出 股票{} 数量{} 价格{}'.format(cash_models,trader_models,stock,amount,price))                            else:                                print('{} {} 卖出 股票{} 数量{} 价格{} 不可以交易'.format(cash_models,trader_models,stock))                        except Exception as e:                            print(e)                            print(print('{} {} 卖出 股票{} 有问题'.format(cash_models,trader_models,stock)))                else:                    print('{} {} 没有卖出股票'.format(cash_models,trader_models))                buy_df=df[df['交易方向']=='buy']                if buy_df.shape[0]>0:                    for stock,amount in zip(buy_df['证券代码'],buy_df['数量']):                        try:                            price=self.data.get_spot_data(stock=stock)['最新价']                            trader_type,amount,price=self.trader.check_av_target_trader(data_type=data_type,trader_type='buy',                                    amount=amount1,limit_volume=limit_amount,value=value,limit_value=limit_value,                                    stock=stock,price=price)                            if trader_type=='buy':                                self.trader.buy(security=stock,price=price,amount=amount)                                print('{} {} 买入 股票{} 数量{} 价格{}'.format(cash_models,trader_models,stock,amount,price))                            else:                                print('{} {} 买入 股票{} 数量{} 价格{} 不可以交易'.format(cash_models,trader_models,stock))                        except Exception as e:                            print(e)                            print(print('{} {} 买入 股票{} 有问题'.format(cash_models,trader_models,stock)))                else:                    print('{} {} 没有买入股票'.format(cash_models,trader_models))            else:                print('未知的下单模式***********************')        else:            print('没有需要下单的数据**************************')

后面我给完整的教程设置

图片

源代码全部上次了不懂的问我就可以

图片

这篇关于综合交易模型--雪球跟单参数说明支持qmt,同花顺的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025318

相关文章

Before和BeforeClass的区别及说明

《Before和BeforeClass的区别及说明》:本文主要介绍Before和BeforeClass的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Before和BeforeClass的区别一个简单的例子当运行这个测试类时总结Before和Befor

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

华为鸿蒙HarmonyOS 5.1官宣7月开启升级! 首批支持名单公布

《华为鸿蒙HarmonyOS5.1官宣7月开启升级!首批支持名单公布》在刚刚结束的华为Pura80系列及全场景新品发布会上,除了众多新品的发布,还有一个消息也点燃了所有鸿蒙用户的期待,那就是Ha... 在今日的华为 Pura 80 系列及全场景新品发布会上,华为宣布鸿蒙 HarmonyOS 5.1 将于 7

Spring中管理bean对象的方式(专业级说明)

《Spring中管理bean对象的方式(专业级说明)》在Spring框架中,Bean的管理是核心功能,主要通过IoC(控制反转)容器实现,下面给大家介绍Spring中管理bean对象的方式,感兴趣的朋... 目录1.Bean的声明与注册1.1 基于XML配置1.2 基于注解(主流方式)1.3 基于Java

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

idea报错java: 非法字符: ‘\ufeff‘的解决步骤以及说明

《idea报错java:非法字符:‘ufeff‘的解决步骤以及说明》:本文主要介绍idea报错java:非法字符:ufeff的解决步骤以及说明,文章详细解释了为什么在Java中会出现uf... 目录BOM是什么?1. BOM的作用2. 为什么会出现 \ufeff 错误?3. 如何解决 \ufeff 问题?最

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题