【Hive SQL 每日一题】统计指定范围内的有效下单用户

2024-06-02 22:12

本文主要是介绍【Hive SQL 每日一题】统计指定范围内的有效下单用户,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 测试数据
    • 需求说明
    • 需求实现

前言:本题制作参考牛客网进阶题目 —— SQL128 未完成试卷数大于1的有效用户

测试数据

-- 创建用户表
DROP TABLE IF EXISTS users;
CREATE TABLE users (user_id INT,name STRING,age INT,gender STRING,register_date STRING
);-- 插入用户数据
INSERT INTO users VALUES
(1, 'Alice', 23, 'F', '2023-01-01'),
(2, 'Bob', 22, 'M', '2023-02-01'),
(3, 'Cathy', 24, 'F', '2023-03-01'),
(4, 'David', 23, 'M', '2023-04-01'),
(5, 'Eve', 25, 'F', '2023-05-01'),
(6, 'Frank', 26, 'M', '2023-06-01'),
(7, 'Grace', 27, 'F', '2023-07-01'),
(8, 'Hank', 28, 'M', '2023-08-01'),
(9, 'Ivy', 29, 'F', '2023-09-01'),
(10, 'Jack', 30, 'M', '2023-10-01');-- 创建订单表
DROP TABLE IF EXISTS orders;
CREATE TABLE orders (order_id INT,user_id INT,product_id INT,order_date STRING,status STRING
);-- 插入订单数据
INSERT INTO orders VALUES
(101, 1, 1001, '2023-01-01', 'completed'),
(102, 1, 1002, '2023-01-01', 'pending'),
(103, 2, 1001, '2023-01-02', 'completed'),
(104, 3, 1001, '2023-01-03', 'pending'),
(105, 3, 1003, '2023-01-04', 'completed'),
(106, 4, 1002, '2023-01-02', 'completed'),
(107, 5, 1001, '2023-01-03', 'completed'),
(108, 5, 1002, '2023-01-04', 'pending'),
(109, 5, 1002, '2023-01-05', 'pending'),
(110, 5, 1003, '2023-01-06', 'pending'),
(111, 5, 1003, '2023-01-07', 'pending'),
(112, 6, 1001, '2023-01-08', 'completed'),
(113, 6, 1002, '2023-01-08', 'pending'),
(114, 6, 1003, '2023-01-08', 'pending'),
(115, 6, 1004, '2023-01-09', 'pending'),
(116, 6, 1005, '2023-01-10', 'completed'),
(117, 7, 1001, '2023-01-11', 'completed'),
(118, 7, 1002, '2023-01-11', 'pending'),
(119, 7, 1003, '2023-01-12', 'pending'),
(120, 7, 1004, '2023-01-12', 'pending'),
(121, 7, 1005, '2023-01-13', 'pending'),
(122, 8, 1001, '2023-01-14', 'completed'),
(123, 8, 1002, '2023-01-14', 'completed'),
(124, 8, 1003, '2023-01-15', 'completed'),
(125, 8, 1004, '2023-01-15', 'pending'),
(126, 8, 1005, '2023-01-16', 'pending'),
(127, 9, 1001, '2023-01-17', 'completed'),
(128, 9, 1002, '2023-01-17', 'completed'),
(129, 9, 1003, '2023-01-18', 'completed'),
(130, 9, 1004, '2023-01-18', 'completed'),
(131, 9, 1005, '2023-01-19', 'completed'),
(132, 10, 1001, '2023-01-20', 'pending'),
(133, 10, 1002, '2023-01-20', 'pending'),
(134, 10, 1003, '2023-01-21', 'pending'),
(135, 10, 1004, '2023-01-21', 'pending'),
(136, 10, 1005, '2023-01-22', 'pending');

需求说明

统计 2023 年每个有效用户的数据(有效用户指完成订单数至少为 1 且未完成订单数小于 5),输出用户ID、用户名称、未完成订单数、完成订单数、购买过的商品ID集合,按用户ID升序排列。

orders 表中的 status 列标识用户订单的状态,共有两种:

  • pending:未完成;

  • completed:已完成。

结果示例:

user_idnamepending_orderscompleted_ordersproduct_ids
1Alice11[“2023-01-01:1001”,“2023-01-01:1002”]
2Bob01[“2023-01-02:1001”]
3Cathy11[“2023-01-03:1001”,“2023-01-04:1003”]
4David01[“2023-01-02:1002”]
5Eve41[“2023-01-03:1001”,“2023-01-04:1002”,“2023-01-05:1002”,“2023-01-06:1003”,“2023-01-07:1003”]
6Frank32[“2023-01-08:1001”,“2023-01-08:1002”,“2023-01-08:1003”,“2023-01-09:1004”,“2023-01-10:1005”]
7Grace41[“2023-01-11:1001”,“2023-01-11:1002”,“2023-01-12:1003”,“2023-01-12:1004”,“2023-01-13:1005”]
8Hank23[“2023-01-14:1001”,“2023-01-14:1002”,“2023-01-15:1003”,“2023-01-15:1004”,“2023-01-16:1005”]
9Ivy05[“2023-01-17:1001”,“2023-01-17:1002”,“2023-01-18:1003”,“2023-01-18:1004”,“2023-01-19:1005”]

其中:

  • user_id:用户ID;
  • name:用户名;
  • pending_orders:未完成订单数;
  • completed_orders:完成订单数;
  • product_ids:每个用户下单的所有日期和产品ID组成的列表。

需求实现

selectu.user_id,name,pending_orders,completed_orders,product_ids
from(selectuser_id,sum(if(status = "pending",1,0)) pending_orders,sum(if(status = "completed",1,0)) completed_orders,collect_list(concat_ws(":",date_format(order_date,"yyyy-MM-dd"),cast(product_id as string))) product_idsfromorderswhereyear(order_date) = "2023"group byuser_id)t1joinusers uont1.user_id = u.user_id
wherecompleted_orders >= 1 and pending_orders < 5
order byu.user_id;

输出结果如下:

在这里插入图片描述

范围筛选统计的需求比较简单,只需要在分组的统计的时候进行判断即可。

本题稍有难度的地方在于,如何将各个用户的下单日期与对应的产品ID进行组合,形成列表,也就是列转行。

在 Hive 中列转行有两个函数:

  • collect_list:传入一个参数(字段),根据分组,对该字段进行聚合,形成列表;

  • collect_set:和上面一样,但它的不同之处在于,会对组合的列表数据进行去重操作。

在 MySQL 中并没有这两个函数,但是有和它们功能类似的函数 group_concat

GROUP_CONCAT(expr SEPARATOR sep)-- 示例
group_concat(start_day SEPARATOR ';')

其中,expr 表示要连接的表达式,可以是列名、常量或者更复杂的表达式。SEPARATOR sep 是一个可选参数,用于指定连接字符串的分隔符,默认为逗号。

这篇关于【Hive SQL 每日一题】统计指定范围内的有效下单用户的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025227

相关文章

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SQL BETWEEN 的常见用法小结

《SQLBETWEEN的常见用法小结》BETWEEN操作符是SQL中非常有用的工具,它允许你快速选取某个范围内的值,本文给大家介绍SQLBETWEEN的常见用法,感兴趣的朋友一起看看吧... 在SQL中,BETWEEN是一个操作符,用于选取介于两个值之间的数据。它包含这两个边界值。BETWEEN操作符常用

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分