Js解析Json数据获取元素JsonPath与深度

2024-06-02 19:38

本文主要是介绍Js解析Json数据获取元素JsonPath与深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文出处:http://www.yund.tech/zdetail.html?type=1&id=c2b21696839eccdef2e9b085b9e064f6

作者: jstarseven


JsonPath 是一种信息抽取类库,是从JSON文档中抽取指定信息的工具,提供多种语言实现版本,包括:Javascript, Python, PHP 和 Java,JsonPath 对于 JSON 来说,相当于 XPATH 对于 XML。

  • JsonPath与Xpath用法对比
  • Java使用Jsonpath解析json数据
  • Js获取Json每个节点的JsonPath
  • 将输出结果转换成树形结构

1.JsonPath与Xpath用法对比

XPathJSONPath描述
/$根节点
.@现行节点
/.or[]取子节点
n/a取父节点,Jsonpath未支持
//就是不管位置,选择所有符合条件的条件
**匹配所有元素节点
@n/a根据属性访问,Json不支持,因为Json是个Key-value递归结构,不需要。
[][]迭代器标示(可以在里边做简单的迭代操作,如数组下标,根据内容选值等)
|[,]支持迭代器中做多选。
[]?()支持过滤操作.
n/a()支持表达式计算
()n/a分组,JsonPath不支持

2.Java使用Jsonpath解析json数据

1)引入fastjson依赖

<dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.6</version>
</dependency>

2)java简单的解析案例

public class JsonPath {public static void main(String[] args) {String jsonStr = "{\n" +"  \"store\": {\n" +"    \"book\": [\n" +"      {\n" +"        \"category\": \"reference\",\n" +"        \"author\": \"Nigel Rees\",\n" +"        \"title\": \"Sayings of the Century\",\n" +"        \"price\": 8.95\n" +"      },\n" +"      {\n" +"        \"category\": \"fiction\",\n" +"        \"author\": \"Evelyn Waugh\",\n" +"        \"title\": \"Sword of Honour\",\n" +"        \"price\": 12.99,\n" +"        \"isbn\": \"0-553-21311-3\"\n" +"      }\n" +"      {\n" +"        \"category\": \"fiction\",\n" +"        \"author\": \"Evelyn Waugh\",\n" +"        \"title\": \"Sword of Honour two\",\n" +"        \"price\": 12.99,\n" +"        \"isbn\": \"0-553-21311-3\"\n" +"      }\n" +"    ],\n" +"    \"bicycle\": {\n" +"      \"color\": \"red\",\n" +"      \"price\": 19.95\n" +"    }\n" +"  }\n" +"}";JSONObject jsonObject = JSON.parseObject(jsonStr);System.out.println("Book:" + JSONPath.eval(jsonObject, "$.store.book"));System.out.println("Book数目:" + JSONPath.eval(jsonObject, "$.store.book.size()"));System.out.println("第一本书title:" + JSONPath.eval(jsonObject, "$.store.book[0].title"));System.out.println("price大于10元的book:" + JSONPath.eval(jsonObject, "$.store.book[price > 10]"));System.out.println("price大于10元的title:" + JSONPath.eval(jsonObject, "$.store.book[price > 10][0].title"));System.out.println("price大于10元的title:" + JSONPath.eval(jsonObject, "$.store.book[price > 10][1].title"));System.out.println("category(类别)为fiction(小说)的book:" + JSONPath.eval(jsonObject, "$.store.book[category = 'fiction']"));System.out.println("bicycle的所有属性值" + JSONPath.eval(jsonObject, "$.store.bicycle.*"));System.out.println("bicycle的color和price属性值" + JSONPath.eval(jsonObject, "$.store.bicycle['color','price']"));}

3.Js获取Json每个节点的JsonPath

1)准备json测试数据

var root = {name: '测试节点',doms: {name: "dom测试",children: [{name: '茶馆',val: 'demo',child: [{"name": "李四", "cal": "ceshi"}, {"name": "王五", "cal": "ceshi"}]},{name: '红与黑',val: 'demo',child: [{"name": "张三", "cal": "ceshi"}, {"name": "张三", "cal": "ceshi"}]}]},children: [{name: '学习',children: []},{name: '电影',children: [{name: '喜剧电影'},{name: '动作电影'}]}]}

2)遍历Json对象获取每个节点的深度与JsonPath

     function traverseTree(node, flat) {var stack = [], res = [];if (!node) return;stack.push({"dom": node, "dep": 0, "path": "$", "name": "根节点"});var tmpNode;while (stack.length > 0) {tmpNode = stack.pop();res.push({"name": tmpNode.name,"pid": tmpNode.pid,"path": tmpNode.path,"dep": tmpNode.dep});traverseNode2(tmpNode, tmpNode.dep);}// 遍历单个节点function traverseNode2(node, dep) {var doc = node.dom;if (Object.prototype.toString.call(doc) === '[object Object]') {for (var val in doc) {var cpath = (node.path + "." + val);stack.push({"dom": doc[val],"dep": (dep + 1),"path": cpath,"pid": node.path,"name": val});}}if (Object.prototype.toString.call(doc) === '[object Array]') {for (let i = 0; i < doc.length; i++) {stack.push({"dom": doc[i],"dep": (dep + 1),"path": (node.path + "[" + i + "]"),"pid": node.path,"name": node.name + "[" + i + "]"});}}}// 树形结构转换function flat2tree(jsonData) {var result = [], temp = {}, i = 0, j = 0, len = jsonData.length;for (; i < len; i++)temp[jsonData[i]['path']] = jsonData[i]for (; j < len; j++) {var cel = jsonData[j]var tcel = temp[cel['pid']]if (tcel) {if (!tcel['children']) {tcel['children'] = [];}tcel['children'].push(cel)} else {result.push(cel);}}return result;}return flat ? flat2tree(res) : res;}

3)测试输出

console.log("res-tree:\n" + JSON.stringify(traverseTree(root, false)));
res-tree:
[{"name":"根节点","path":"$","dep":0},{"name":"children","pid":"$","path":"$.children","dep":1},{"name":"children[1]","pid":"$.children","path":"$.children[1]","dep":2},{"name":"children","pid":"$.children[1]","path":"$.children[1].children","dep":3},{"name":"children[1]","pid":"$.children[1].children","path":"$.children[1].children[1]","dep":4},{"name":"name","pid":"$.children[1].children[1]","path":"$.children[1].children[1].name","dep":5},{"name":"children[0]","pid":"$.children[1].children","path":"$.children[1].children[0]","dep":4},{"name":"name","pid":"$.children[1].children[0]","path":"$.children[1].children[0].name","dep":5},{"name":"name","pid":"$.children[1]","path":"$.children[1].name","dep":3},{"name":"children[0]","pid":"$.children","path":"$.children[0]","dep":2},{"name":"children","pid":"$.children[0]","path":"$.children[0].children","dep":3},{"name":"name","pid":"$.children[0]","path":"$.children[0].name","dep":3},{"name":"doms","pid":"$","path":"$.doms","dep":1},{"name":"children","pid":"$.doms","path":"$.doms.children","dep":2},{"name":"children[1]","pid":"$.doms.children","path":"$.doms.children[1]","dep":3},{"name":"child","pid":"$.doms.children[1]","path":"$.doms.children[1].child","dep":4},{"name":"child[1]","pid":"$.doms.children[1].child","path":"$.doms.children[1].child[1]","dep":5},{"name":"cal","pid":"$.doms.children[1].child[1]","path":"$.doms.children[1].child[1].cal","dep":6},{"name":"name","pid":"$.doms.children[1].child[1]","path":"$.doms.children[1].child[1].name","dep":6},{"name":"child[0]","pid":"$.doms.children[1].child","path":"$.doms.children[1].child[0]","dep":5},{"name":"cal","pid":"$.doms.children[1].child[0]","path":"$.doms.children[1].child[0].cal","dep":6},{"name":"name","pid":"$.doms.children[1].child[0]","path":"$.doms.children[1].child[0].name","dep":6},{"name":"val","pid":"$.doms.children[1]","path":"$.doms.children[1].val","dep":4},{"name":"name","pid":"$.doms.children[1]","path":"$.doms.children[1].name","dep":4},{"name":"children[0]","pid":"$.doms.children","path":"$.doms.children[0]","dep":3},{"name":"child","pid":"$.doms.children[0]","path":"$.doms.children[0].child","dep":4},{"name":"child[1]","pid":"$.doms.children[0].child","path":"$.doms.children[0].child[1]","dep":5},{"name":"cal","pid":"$.doms.children[0].child[1]","path":"$.doms.children[0].child[1].cal","dep":6},{"name":"name","pid":"$.doms.children[0].child[1]","path":"$.doms.children[0].child[1].name","dep":6},{"name":"child[0]","pid":"$.doms.children[0].child","path":"$.doms.children[0].child[0]","dep":5},{"name":"cal","pid":"$.doms.children[0].child[0]","path":"$.doms.children[0].child[0].cal","dep":6},{"name":"name","pid":"$.doms.children[0].child[0]","path":"$.doms.children[0].child[0].name","dep":6},{"name":"val","pid":"$.doms.children[0]","path":"$.doms.children[0].val","dep":4},{"name":"name","pid":"$.doms.children[0]","path":"$.doms.children[0].name","dep":4},{"name":"name","pid":"$.doms","path":"$.doms.name","dep":2},{"name":"name","pid":"$","path":"$.name","dep":1}
]

4.将输出结果转换成树形结构

console.log("res-tree:\n" + JSON.stringify(traverseTree(root, true)));
res-tree:
[{"name":"根节点","path":"$","dep":0,"children":[{"name":"children","pid":"$","path":"$.children","dep":1,"children":[{"name":"children[1]","pid":"$.children","path":"$.children[1]","dep":2,"children":[{"name":"children","pid":"$.children[1]","path":"$.children[1].children","dep":3,"children":[{"name":"children[1]","pid":"$.children[1].children","path":"$.children[1].children[1]","dep":4,"children":[{"name":"name","pid":"$.children[1].children[1]","path":"$.children[1].children[1].name","dep":5}]},{"name":"children[0]","pid":"$.children[1].children","path":"$.children[1].children[0]","dep":4,"children":[{"name":"name","pid":"$.children[1].children[0]","path":"$.children[1].children[0].name","dep":5}]}]},{"name":"name","pid":"$.children[1]","path":"$.children[1].name","dep":3}]},{"name":"children[0]","pid":"$.children","path":"$.children[0]","dep":2,"children":[{"name":"children","pid":"$.children[0]","path":"$.children[0].children","dep":3},{"name":"name","pid":"$.children[0]","path":"$.children[0].name","dep":3}]}]},{"name":"doms","pid":"$","path":"$.doms","dep":1,"children":[{"name":"children","pid":"$.doms","path":"$.doms.children","dep":2,"children":[{"name":"children[1]","pid":"$.doms.children","path":"$.doms.children[1]","dep":3,"children":[{"name":"child","pid":"$.doms.children[1]","path":"$.doms.children[1].child","dep":4,"children":[{"name":"child[1]","pid":"$.doms.children[1].child","path":"$.doms.children[1].child[1]","dep":5,"children":[{"name":"cal","pid":"$.doms.children[1].child[1]","path":"$.doms.children[1].child[1].cal","dep":6},{"name":"name","pid":"$.doms.children[1].child[1]","path":"$.doms.children[1].child[1].name","dep":6}]},{"name":"child[0]","pid":"$.doms.children[1].child","path":"$.doms.children[1].child[0]","dep":5,"children":[{"name":"cal","pid":"$.doms.children[1].child[0]","path":"$.doms.children[1].child[0].cal","dep":6},{"name":"name","pid":"$.doms.children[1].child[0]","path":"$.doms.children[1].child[0].name","dep":6}]}]},{"name":"val","pid":"$.doms.children[1]","path":"$.doms.children[1].val","dep":4},{"name":"name","pid":"$.doms.children[1]","path":"$.doms.children[1].name","dep":4}]},{"name":"children[0]","pid":"$.doms.children","path":"$.doms.children[0]","dep":3,"children":[{"name":"child","pid":"$.doms.children[0]","path":"$.doms.children[0].child","dep":4,"children":[{"name":"child[1]","pid":"$.doms.children[0].child","path":"$.doms.children[0].child[1]","dep":5,"children":[{"name":"cal","pid":"$.doms.children[0].child[1]","path":"$.doms.children[0].child[1].cal","dep":6},{"name":"name","pid":"$.doms.children[0].child[1]","path":"$.doms.children[0].child[1].name","dep":6}]},{"name":"child[0]","pid":"$.doms.children[0].child","path":"$.doms.children[0].child[0]","dep":5,"children":[{"name":"cal","pid":"$.doms.children[0].child[0]","path":"$.doms.children[0].child[0].cal","dep":6},{"name":"name","pid":"$.doms.children[0].child[0]","path":"$.doms.children[0].child[0].name","dep":6}]}]},{"name":"val","pid":"$.doms.children[0]","path":"$.doms.children[0].val","dep":4},{"name":"name","pid":"$.doms.children[0]","path":"$.doms.children[0].name","dep":4}]}]},{"name":"name","pid":"$.doms","path":"$.doms.name","dep":2}]},{"name":"name","pid":"$","path":"$.name","dep":1}]}
]

file

本文由博客群发一文多发等运营工具平台 OpenWrite 发布

这篇关于Js解析Json数据获取元素JsonPath与深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024902

相关文章

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro