本文主要是介绍聊聊flink Table的Distinct Aggregation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
序
本文主要研究一下flink Table的Distinct Aggregation
实例
-
//Distinct can be applied to GroupBy Aggregation, GroupBy Window Aggregation and Over Window Aggregation. -
Table orders = tableEnv.scan("Orders"); -
// Distinct aggregation on group by -
Table groupByDistinctResult = orders -
.groupBy("a") -
.select("a, b.sum.distinct as d"); -
// Distinct aggregation on time window group by -
Table groupByWindowDistinctResult = orders -
.window(Tumble.over("5.minutes").on("rowtime").as("w")).groupBy("a, w") -
.select("a, b.sum.distinct as d"); -
// Distinct aggregation on over window -
Table result = orders -
.window(Over -
.partitionBy("a") -
.orderBy("rowtime") -
.preceding("UNBOUNDED_RANGE") -
.as("w")) -
.select("a, b.avg.distinct over w, b.max over w, b.min over w"); -
//User-defined aggregation function can also be used with DISTINCT modifiers -
Table orders = tEnv.scan("Orders"); -
// Use distinct aggregation for user-defined aggregate functions -
tEnv.registerFunction("myUdagg", new MyUdagg()); -
orders.groupBy("users").select("users, myUdagg.distinct(points) as myDistinctResult");
- Distinct Aggregation可以用于内置的及自定义的aggregation function;内置的aggregation function诸如GroupBy Aggregation、GroupBy Window Aggregation、Over Window Aggregation
AggregateFunction
flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/table/functions/AggregateFunction.scala
-
/** -
* Base class for User-Defined Aggregates. -
* -
* The behavior of an [[AggregateFunction]] can be defined by implementing a series of custom -
* methods. An [[AggregateFunction]] needs at least three methods: -
* - createAccumulator, -
* - accumulate, and -
* - getValue. -
* -
* There are a few other methods that can be optional to have: -
* - retract, -
* - merge, and -
* - resetAccumulator -
* -
* All these methods must be declared publicly, not static and named exactly as the names -
* mentioned above. The methods createAccumulator and getValue are defined in the -
* [[AggregateFunction]] functions, while other methods are explained below. -
* -
* -
* {{{ -
* Processes the input values and update the provided accumulator instance. The method -
* accumulate can be overloaded with different custom types and arguments. An AggregateFunction -
* requires at least one accumulate() method. -
* -
* @param accumulator the accumulator which contains the current aggregated results -
* @param [user defined inputs] the input value (usually obtained from a new arrived data). -
* -
* def accumulate(accumulator: ACC, [user defined inputs]): Unit -
* }}} -
* -
* -
* {{{ -
* Retracts the input values from the accumulator instance. The current design assumes the -
* inputs are the values that have been previously accumulated. The method retract can be -
* overloaded with different custom types and arguments. This function must be implemented for -
* datastream bounded over aggregate. -
* -
* @param accumulator the accumulator which contains the current aggregated results -
* @param [user defined inputs] the input value (usually obtained from a new arrived data). -
* -
* def retract(accumulator: ACC, [user defined inputs]): Unit -
* }}} -
* -
* -
* {{{ -
* Merges a group of accumulator instances into one accumulator instance. This function must be -
* implemented for datastream session window grouping aggregate and dataset grouping aggregate. -
* -
* @param accumulator the accumulator which will keep the merged aggregate results. It should -
* be noted that the accumulator may contain the previous aggregated -
* results. Therefore user should not replace or clean this instance in the -
* custom merge method. -
* @param its an [[java.lang.Iterable]] pointed to a group of accumulators that will be -
* merged. -
* -
* def merge(accumulator: ACC, its: java.lang.Iterable[ACC]): Unit -
* }}} -
* -
* -
* {{{ -
* Resets the accumulator for this [[AggregateFunction]]. This function must be implemented for -
* dataset grouping aggregate. -
* -
* @param accumulator the accumulator which needs to be reset -
* -
* def resetAccumulator(accumulator: ACC): Unit -
* }}} -
* -
* -
* @tparam T the type of the aggregation result -
* @tparam ACC the type of the aggregation accumulator. The accumulator is used to keep the -
* aggregated values which are needed to compute an aggregation result. -
* AggregateFunction represents its state using accumulator, thereby the state of the -
* AggregateFunction must be put into the accumulator. -
*/ -
abstract class AggregateFunction[T, ACC] extends UserDefinedFunction { -
/** -
* Creates and init the Accumulator for this [[AggregateFunction]]. -
* -
* @return the accumulator with the initial value -
*/ -
def createAccumulator(): ACC -
/** -
* Called every time when an aggregation result should be materialized. -
* The returned value could be either an early and incomplete result -
* (periodically emitted as data arrive) or the final result of the -
* aggregation. -
* -
* @param accumulator the accumulator which contains the current -
* aggregated results -
* @return the aggregation result -
*/ -
def getValue(accumulator: ACC): T -
/** -
* Returns true if this AggregateFunction can only be applied in an OVER window. -
* -
* @return true if the AggregateFunction requires an OVER window, false otherwise. -
*/ -
def requiresOver: Boolean = false -
/** -
* Returns the TypeInformation of the AggregateFunction's result. -
* -
* @return The TypeInformation of the AggregateFunction's result or null if the result type -
* should be automatically inferred. -
*/ -
def getResultType: TypeInformation[T] = null -
/** -
* Returns the TypeInformation of the AggregateFunction's accumulator. -
* -
* @return The TypeInformation of the AggregateFunction's accumulator or null if the -
* accumulator type should be automatically inferred. -
*/ -
def getAccumulatorType: TypeInformation[ACC] = null -
}
- AggregateFunction继承了UserDefinedFunction;它有两个泛型,一个T表示value的泛型,一个ACC表示Accumulator的泛型;它定义了createAccumulator、getValue、getResultType、getAccumulatorType方法(
这几个方法中子类必须实现createAccumulator、getValue方法) - 对于AggregateFunction,有一个accumulate方法这里没定义,但是需要子类定义及实现,该方法接收ACC,T两个参数,返回void;另外还有retract、merge、resetAccumulator三个方法是可选的,需要子类根据情况去定义及实现
- 对于datastream bounded over aggregate操作,要求实现restract方法,该方法接收ACC,T两个参数,返回void;对于datastream session window grouping aggregate以及dataset grouping aggregate操作,要求实现merge方法,该方法接收ACC,java.lang.Iterable<T>两个参数,返回void;对于dataset grouping aggregate操作,要求实现resetAccumulator方法,该方法接收ACC参数,返回void
小结
- Table的Distinct Aggregation可以用于内置的及自定义的aggregation function;内置的aggregation function诸如GroupBy Aggregation、GroupBy Window Aggregation、Over Window Aggregation
- AggregateFunction继承了UserDefinedFunction;它有两个泛型,一个T表示value的泛型,一个ACC表示Accumulator的泛型;它定义了createAccumulator、getValue、getResultType、getAccumulatorType方法(
这几个方法中子类必须实现createAccumulator、getValue方法) - 对于AggregateFunction,有一个accumulate方法这里没定义,但是需要子类定义及实现,该方法接收ACC,T两个参数,返回void;另外还有retract、merge、resetAccumulator三个方法是可选的,需要子类根据情况去定义及实现(
对于datastream bounded over aggregate操作,要求实现restract方法,该方法接收ACC,T两个参数,返回void;对于datastream session window grouping aggregate以及dataset grouping aggregate操作,要求实现merge方法,该方法接收ACC,java.lang.Iterable\<T\>两个参数,返回void;对于dataset grouping aggregate操作,要求实现resetAccumulator方法,该方法接收ACC参数,返回void)
doc
- Aggregations
这篇关于聊聊flink Table的Distinct Aggregation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!