ChatGLM lora微调时出现KeyError: ‘context‘的解决方案

2024-06-02 11:20

本文主要是介绍ChatGLM lora微调时出现KeyError: ‘context‘的解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题概述

在使用 ChatGLM Lora 进行微调时,您遇到了 KeyError: 'context' 错误,这通常表明代码中缺少对 context 变量的定义或赋值。

ChatGLM Lora 介绍

ChatGLM Lora 是基于 Transformer 架构的大型语言模型,它具有强大的文本生成和理解能力。Lora 是对其进行微调的技术,可以使其在特定领域或任务上表现更好。

解决方案

  1. 检查代码: 仔细检查您的代码,确保已经定义了 context 变量并对其进行了赋值。
  2. 添加 context 变量: 如果代码中确实缺少 context 变量,请在适当的位置添加该变量并对其进行赋值。
  3. 参考示例代码: 可以参考 ChatGLM Lora 官方文档或示例代码,了解如何正确使用 context 变量。

ChatGLM Lora 原理详解

ChatGLM Lora 使用 Transformer 架构来处理文本,其核心是 Encoder-Decoder 结构。Encoder 将文本编码为向量表示,Decoder 利用 Encoder 的输出和当前输入生成下一个单词。Lora 微调通过调整模型参数来提升其在特定领域或任务上的表现。

ChatGLM Lora 应用场景解释

ChatGLM Lora 可用于各种自然语言处理 (NLP) 任务,例如:

  • 文本生成:生成创意文本、翻译语言、写不同类型的创意内容
  • 文本理解:问答、情感分析、文本摘要
  • 对话系统:构建智能对话系统、聊天机器人

ChatGLM Lora 算法实现

ChatGLM Lora 基于 Transformer 架构,其算法实现主要包括:

注意事项

如果您需要更具体的帮助,请提供您使用的 ChatGLM 模型版本和数据集,我会尽力提供更详细的代码示例和解决方案。

  • 注意力机制: 通过注意力机制,模型可以聚焦于输入文本中的重要部分。
  • Transformer 层: Transformer 层由 Self-Attention 和 Feed Forward Network 组成,可以提取文本的深层特征。
  • Positional Encoding: Positional Encoding 将文本中的词序信息编码为向量表示。
  • import torch
    from transformers import ChatGLMLMForSequenceClassification, ChatGLMTokenizer# 加载模型和 tokenizer
    model = ChatGLMLMForSequenceClassification.from_pretrained("chat-glm-base")
    tokenizer = ChatGLMTokenizer.from_pretrained("chat-glm-base")# 定义文本和标签
    text = "我喜欢用 Gemini 进行自然语言处理任务。"
    label = "positive"# 将文本编码为输入
    encoded_input = tokenizer(text, truncation=True, padding=True, return_tensors="pt")# 定义微调参数
    learning_rate = 1e-5
    epochs = 3# 创建优化器
    optimizer = AdamW(model.parameters(), lr=learning_rate)# 训练模型
    for epoch in range(epochs):# 将输入数据送入模型并计算损失output = model(**encoded_input, labels=label)loss = output.loss# 反向传播并更新参数loss.backward()optimizer.step()optimizer.zero_grad()# 预测标签
    predicted_label = model(**encoded_input).logits.argmax().item()# 打印结果
    print(f"文本: {text}")
    print(f"预测标签: {predicted_label}")
    print(f"真实标签: {label}")
    
     

    代码解释:

  • 导入库: 导入必要的库,包括 torchtransformers

  • 加载模型和 tokenizer: 加载预训练的 ChatGLM 模型和对应的 tokenizer。

  • 定义文本和标签: 定义要进行分类的文本和相应的标签。

  • 将文本编码为输入: 使用 tokenizer 对文本进行预处理,将文本转换为模型可以理解的数字序列。

  • 定义微调参数: 设置学习率和训练轮数等微调参数。

  • 创建优化器: 创建优化器对象,用于更新模型参数。

  • 训练模型: 使用循环进行训练,每次迭代计算损失并更新模型参数。

  • 预测标签: 使用训练好的模型对新的文本进行预测,并输出预测结果。

  • 打印结果: 打印预测结果和真实标签进行对比。

  • 确保您已经正确安装了 ChatGLM 模型库和 tokenizer。
  • 请根据您实际使用的模型和数据调整代码中的参数。
  • 您可以参考 ChatGLM 官方文档获取更多信息和示例。

ChatGLM Lora 代码完整详细实现

ChatGLM Lora 的代码实现较为复杂,需要涉及模型加载、数据预处理、微调训练等多个步骤。建议参考官方文档或示例代码进行学习和实践。

ChatGLM Lora 部署测试搭建实现

ChatGLM Lora 的部署和测试需要借助特定的工具和环境,具体步骤请参考官方文档或寻求专业人士的帮助。

ChatGLM Lora 文献材料链接

  • ChatGLM Lora 官方文档: https://huggingface.co/Laurie/ChatGLM-lora
  • Transformer 论文: https://arxiv.org/abs/1706.03762

ChatGLM Lora 应用示例产品

ChatGLM Lora 可用于构建各种 NLP 应用,例如:

  • 智能写作助手
  • 机器翻译工具
  • 对话式客服系统

ChatGLM Lora 总结

ChatGLM Lora 是一个强大的 NLP 模型,可用于各种自然语言处理任务。Lora 微调可以提升其在特定领域或任务上的表现。在使用 ChatGLM Lora 进行微调时,请确保正确定义和使用 context 变量,并参考官方文档或示例代码进行学习和实践。

ChatGLM Lora 影响

ChatGLM Lora 的出现为 NLP 领域带来了新的可能性,使其能够更好地理解和生成自然语言。

ChatGLM Lora 未来扩展

ChatGLM Lora 未来可能会加入更多功能,例如支持多语言、支持自定义任务等。

如果您能够提供更多有关您代码和使用的 ChatGLM Lora 版本的信息,我可以提供更具体的解决方案和代码示例。

这篇关于ChatGLM lora微调时出现KeyError: ‘context‘的解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023824

相关文章

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

SpringSecurity显示用户账号已被锁定的原因及解决方案

《SpringSecurity显示用户账号已被锁定的原因及解决方案》SpringSecurity中用户账号被锁定问题源于UserDetails接口方法返回值错误,解决方案是修正isAccountNon... 目录SpringSecurity显示用户账号已被锁定的解决方案1.问题出现前的工作2.问题出现原因各

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

html 滚动条滚动过快会留下边框线的解决方案

《html滚动条滚动过快会留下边框线的解决方案》:本文主要介绍了html滚动条滚动过快会留下边框线的解决方案,解决方法很简单,详细内容请阅读本文,希望能对你有所帮助... 滚动条滚动过快时,会留下边框线但其实大部分时候是这样的,没有多出边框线的滚动条滚动过快时留下边框线的问题通常与滚动条样式和滚动行

Oracle修改端口号之后无法启动的解决方案

《Oracle修改端口号之后无法启动的解决方案》Oracle数据库更改端口后出现监听器无法启动的问题确实较为常见,但并非必然发生,这一问题通常源于​​配置错误或环境冲突​​,而非端口修改本身,以下是系... 目录一、问题根源分析​​​二、保姆级解决方案​​​​步骤1:修正监听器配置文件 (listener.

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地