ChatGLM lora微调时出现KeyError: ‘context‘的解决方案

2024-06-02 11:20

本文主要是介绍ChatGLM lora微调时出现KeyError: ‘context‘的解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题概述

在使用 ChatGLM Lora 进行微调时,您遇到了 KeyError: 'context' 错误,这通常表明代码中缺少对 context 变量的定义或赋值。

ChatGLM Lora 介绍

ChatGLM Lora 是基于 Transformer 架构的大型语言模型,它具有强大的文本生成和理解能力。Lora 是对其进行微调的技术,可以使其在特定领域或任务上表现更好。

解决方案

  1. 检查代码: 仔细检查您的代码,确保已经定义了 context 变量并对其进行了赋值。
  2. 添加 context 变量: 如果代码中确实缺少 context 变量,请在适当的位置添加该变量并对其进行赋值。
  3. 参考示例代码: 可以参考 ChatGLM Lora 官方文档或示例代码,了解如何正确使用 context 变量。

ChatGLM Lora 原理详解

ChatGLM Lora 使用 Transformer 架构来处理文本,其核心是 Encoder-Decoder 结构。Encoder 将文本编码为向量表示,Decoder 利用 Encoder 的输出和当前输入生成下一个单词。Lora 微调通过调整模型参数来提升其在特定领域或任务上的表现。

ChatGLM Lora 应用场景解释

ChatGLM Lora 可用于各种自然语言处理 (NLP) 任务,例如:

  • 文本生成:生成创意文本、翻译语言、写不同类型的创意内容
  • 文本理解:问答、情感分析、文本摘要
  • 对话系统:构建智能对话系统、聊天机器人

ChatGLM Lora 算法实现

ChatGLM Lora 基于 Transformer 架构,其算法实现主要包括:

注意事项

如果您需要更具体的帮助,请提供您使用的 ChatGLM 模型版本和数据集,我会尽力提供更详细的代码示例和解决方案。

  • 注意力机制: 通过注意力机制,模型可以聚焦于输入文本中的重要部分。
  • Transformer 层: Transformer 层由 Self-Attention 和 Feed Forward Network 组成,可以提取文本的深层特征。
  • Positional Encoding: Positional Encoding 将文本中的词序信息编码为向量表示。
  • import torch
    from transformers import ChatGLMLMForSequenceClassification, ChatGLMTokenizer# 加载模型和 tokenizer
    model = ChatGLMLMForSequenceClassification.from_pretrained("chat-glm-base")
    tokenizer = ChatGLMTokenizer.from_pretrained("chat-glm-base")# 定义文本和标签
    text = "我喜欢用 Gemini 进行自然语言处理任务。"
    label = "positive"# 将文本编码为输入
    encoded_input = tokenizer(text, truncation=True, padding=True, return_tensors="pt")# 定义微调参数
    learning_rate = 1e-5
    epochs = 3# 创建优化器
    optimizer = AdamW(model.parameters(), lr=learning_rate)# 训练模型
    for epoch in range(epochs):# 将输入数据送入模型并计算损失output = model(**encoded_input, labels=label)loss = output.loss# 反向传播并更新参数loss.backward()optimizer.step()optimizer.zero_grad()# 预测标签
    predicted_label = model(**encoded_input).logits.argmax().item()# 打印结果
    print(f"文本: {text}")
    print(f"预测标签: {predicted_label}")
    print(f"真实标签: {label}")
    
     

    代码解释:

  • 导入库: 导入必要的库,包括 torchtransformers

  • 加载模型和 tokenizer: 加载预训练的 ChatGLM 模型和对应的 tokenizer。

  • 定义文本和标签: 定义要进行分类的文本和相应的标签。

  • 将文本编码为输入: 使用 tokenizer 对文本进行预处理,将文本转换为模型可以理解的数字序列。

  • 定义微调参数: 设置学习率和训练轮数等微调参数。

  • 创建优化器: 创建优化器对象,用于更新模型参数。

  • 训练模型: 使用循环进行训练,每次迭代计算损失并更新模型参数。

  • 预测标签: 使用训练好的模型对新的文本进行预测,并输出预测结果。

  • 打印结果: 打印预测结果和真实标签进行对比。

  • 确保您已经正确安装了 ChatGLM 模型库和 tokenizer。
  • 请根据您实际使用的模型和数据调整代码中的参数。
  • 您可以参考 ChatGLM 官方文档获取更多信息和示例。

ChatGLM Lora 代码完整详细实现

ChatGLM Lora 的代码实现较为复杂,需要涉及模型加载、数据预处理、微调训练等多个步骤。建议参考官方文档或示例代码进行学习和实践。

ChatGLM Lora 部署测试搭建实现

ChatGLM Lora 的部署和测试需要借助特定的工具和环境,具体步骤请参考官方文档或寻求专业人士的帮助。

ChatGLM Lora 文献材料链接

  • ChatGLM Lora 官方文档: https://huggingface.co/Laurie/ChatGLM-lora
  • Transformer 论文: https://arxiv.org/abs/1706.03762

ChatGLM Lora 应用示例产品

ChatGLM Lora 可用于构建各种 NLP 应用,例如:

  • 智能写作助手
  • 机器翻译工具
  • 对话式客服系统

ChatGLM Lora 总结

ChatGLM Lora 是一个强大的 NLP 模型,可用于各种自然语言处理任务。Lora 微调可以提升其在特定领域或任务上的表现。在使用 ChatGLM Lora 进行微调时,请确保正确定义和使用 context 变量,并参考官方文档或示例代码进行学习和实践。

ChatGLM Lora 影响

ChatGLM Lora 的出现为 NLP 领域带来了新的可能性,使其能够更好地理解和生成自然语言。

ChatGLM Lora 未来扩展

ChatGLM Lora 未来可能会加入更多功能,例如支持多语言、支持自定义任务等。

如果您能够提供更多有关您代码和使用的 ChatGLM Lora 版本的信息,我可以提供更具体的解决方案和代码示例。

这篇关于ChatGLM lora微调时出现KeyError: ‘context‘的解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023824

相关文章

Redis高性能Key-Value存储与缓存利器常见解决方案

《Redis高性能Key-Value存储与缓存利器常见解决方案》Redis是高性能内存Key-Value存储系统,支持丰富数据类型与持久化方案(RDB/AOF),本文给大家介绍Redis高性能Key-... 目录Redis:高性能Key-Value存储与缓存利器什么是Redis?为什么选择Redis?Red

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到