使用logistic regression 处理 良/恶性肿瘤分类任务 案例

本文主要是介绍使用logistic regression 处理 良/恶性肿瘤分类任务 案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.读入数据

2.随机切分数据集,把数据集切分成训练集和测试集

3.对数据集进行标准化

4.创建logistic regression 模型,在训练集上训练数据

5.在测试集上进行预测分类

logistic regression 预测的准确率:0.9883040935672515

# -*- coding:utf-8 -*-
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")if __name__ == '__main__':print "hello"# 创建特征列表。column_names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin','Normal Nucleoli', 'Mitoses', 'Class']# 使用pandas.read_csv函数从互联网读取指定数据。data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data',names=column_names)# print data# 将?替换为标准缺失值表示。data = data.replace(to_replace='?', value=np.nan)# 丢弃带有缺失值的数据(只要有一个维度有缺失)。data = data.dropna(how='any')# 输出data的数据量和维度。print data.shape# 使用sklearn.cross_valiation里的train_test_split模块用于分割数据。from sklearn.model_selection import train_test_split# 随机采样25%的数据用于测试,剩下的75%用于构建训练集合。X_train, X_test, y_train, y_test = train_test_split(data[column_names[1:10]], data[column_names[10]],test_size=0.25, random_state=33)# 从sklearn.preprocessing里导入StandardScaler。from sklearn.preprocessing import StandardScaler# 从sklearn.linear_model里导入LogisticRegression与SGDClassifier。from sklearn.linear_model import LogisticRegressionfrom sklearn.linear_model import SGDClassifier# 标准化数据,保证每个维度的特征数据方差为1,均值为0。使得预测结果不会被某些维度过大的特征值而主导。ss = StandardScaler()X_train = ss.fit_transform(X_train)X_test = ss.transform(X_test)# 初始化LogisticRegression与SGDClassifier。lr = LogisticRegression()sgdc = SGDClassifier()# 调用LogisticRegression中的fit函数/模块用来训练模型参数。lr.fit(X_train, y_train)# 使用训练好的模型lr对X_test进行预测,结果储存在变量lr_y_predict中。lr_y_predict = lr.predict(X_test)# 调用SGDClassifier中的fit函数/模块用来训练模型参数。sgdc.fit(X_train, y_train)# 使用训练好的模型sgdc对X_test进行预测,结果储存在变量sgdc_y_predict中。sgdc_y_predict = sgdc.predict(X_test)# 从sklearn.metrics里导入classification_report模块。from sklearn.metrics import classification_report# 使用逻辑斯蒂回归模型自带的评分函数score获得模型在测试集上的准确性结果。print 'Accuracy of LR Classifier:', lr.score(X_test, y_test)# 利用classification_report模块获得LogisticRegression其他三个指标的结果。print classification_report(y_test, lr_y_predict, target_names=['Benign', 'Malignant'])# 使用随机梯度下降模型自带的评分函数score获得模型在测试集上的准确性结果。print 'Accuarcy of SGD Classifier:', sgdc.score(X_test, y_test)# 利用classification_report模块获得SGDClassifier其他三个指标的结果。print classification_report(y_test, sgdc_y_predict, target_names=['Benign', 'Malignant'])

 

这篇关于使用logistic regression 处理 良/恶性肿瘤分类任务 案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023734

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

关于Mybatis和JDBC的使用及区别

《关于Mybatis和JDBC的使用及区别》:本文主要介绍关于Mybatis和JDBC的使用及区别,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、JDBC1.1、流程1.2、优缺点2、MyBATis2.1、执行流程2.2、使用2.3、实现方式1、XML配置文件

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Java资源管理和引用体系的使用详解

《Java资源管理和引用体系的使用详解》:本文主要介绍Java资源管理和引用体系的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Java的引用体系1、强引用 (Strong Reference)2、软引用 (Soft Reference)3、弱引用 (W