《neural network and deep learning》题解——ch03 再看手写识别问题题解与源码分析

本文主要是介绍《neural network and deep learning》题解——ch03 再看手写识别问题题解与源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/u011239443/article/details/77649026

完整代码:https://github.com/xiaoyesoso/neural-networks-and-deep-learning/blob/master/src/network2.py

我们之前根据《neural network and deep learning》题解——ch02 反向传播讲解了ch02 Network源码分析。这篇是对ch02 Network源码分析的改进。这里我们结合《机器学习技法》学习笔记12——神经网络重新讲解下。

交叉熵代价函数

class QuadraticCost(object):@staticmethoddef fn(a, y):return 0.5 * np.linalg.norm(a - y) ** 2@staticmethoddef delta(z, a, y):return (a - y) * sigmoid_prime(z)class CrossEntropyCost(object):@staticmethoddef fn(a, y):return np.sum(np.nan_to_num(-y * np.log(a) - (1 - y) * np.log(1 - a)))@staticmethoddef delta(z, a, y):return (a - y)

这边我们把损失函数封装成两个类,静态函数 fn 返回的是损失,delta返回的是ch02 反向传播中的δ。该delta对应《机器学习技法》学习笔记12——神经网络中就是:

我们在Network中使用的就是二次代价函数,这里我们就只讲解另外的交叉熵代价函数:

对应代码:

np.sum(np.nan_to_num(-y * np.log(a) - (1 - y) * np.log(1 - a)))

接下来我们来看看关于delta的问题:

看看 network.py 中的 Network.cost_derivative ⽅法。这个⽅法是为⼆次代价函数写的。怎样修改可以⽤于交叉熵代价函数上?你能不能想到可能在交叉熵函数上遇到的问题?在 network2.py 中,我们已经去掉了Network.cost_derivative ⽅法,将其集成进了‘CrossEntropyCost.delta‘ ⽅法中。请问,这样是如何解决你已经发现的问题的?

对应《机器学习技法》学习笔记12——神经网络中,cost_derivative就是 ∂ e n ∂ x L ∂\frac{e_n}{∂x^L} xLen,有链式法则得到:
δ L = ∂ e n ∂ x L ∂ x L ∂ s L \large δ^L = \frac{∂e_n}{∂x^L}\frac{∂x^L}{∂s^L} δL=xLensLxL
network中也是的cost_derivative也是用在求δ。
而CrossEntropyCost.delta是:

return (a - y)

代码 中的 a 就是上式中的x,z 就是上式中的 s。
我们对CrossEntropyCost关于a求导,得到:
− ( y a − 1 − y 1 − a ) = − y ( 1 − a ) + a ( 1 − y ) a ( 1 − a ) = − y + a a ( 1 − a ) \large -(\frac{y}{a} - \frac{1-y}{1-a}) = \frac{-y(1-a) + a(1- y)}{a(1-a)} = \frac{-y+a}{a(1-a)} (ay1a1y)=a(1a)y(1a)+a(1y)=a(1a)y+a
所以 CrossEntropyCost 的 cost_derivative 是 − y + a a ( 1 − a ) \frac{-y+a}{a(1-a)} a(1a)y+a
由 http://blog.csdn.net/u011239443/article/details/75091283#t0 可知:
∂ a ∂ z = a ( 1 − a ) \large \frac{∂a}{∂z} = a(1-a) za=a(1a)
所以:
δ = ∂ e n ∂ a ∂ a ∂ z = − y + a a ( 1 − a ) a ( 1 − a ) = a − y \large δ = \frac{∂e_n}{∂a}\frac{∂a}{∂z} = \frac{-y+a}{a(1-a)}a(1-a) = a - y δ=aenza=a(1a)y+aa(1a)=ay

初始化

和Network基本上一样,只不过封装成了一个default_weight_initializer函数

    def __init__(self, sizes, cost=CrossEntropyCost):self.num_layers = len(sizes)self.sizes = sizesself.default_weight_initializer()self.cost = costdef default_weight_initializer(self):self.biases = [np.random.rand(y, 1) for y in self.sizes[1:]]self.weights = [np.random.rand(y, x) / np.sqrt(x) for x, y in zip(self.sizes[:-1], self.sizes[1:])]

随机梯度下降

和Network基本上一样,各个monitor是代表是否需要检测该对应的指标。

    def SGD(self, training_data, epochs, mini_batch_size, eta,lmbda=0.0,evaluation_data=None,monitor_evaluation_cost=False,monitor_evaluation_accuracy=False,monitor_training_cost=False,monitor_training_accuray=False):if evaluation_data:n_data = len(evaluation_data)n = len(training_data)evaluation_cost, evaluation_accurary = [], []training_cost, training_accuray = [], []for j in xrange(epochs):random.shuffle(training_data)mini_batches = [training_data[k:k + mini_batch_size] for k in range(0, n, mini_batch_size)]for mini_batch in mini_batches:self.update_mini_batch(mini_batch, eta, lmbda, len(training_data))print "Epoch %s training complete" %(j+1)if monitor_training_cost:cost = self.total_cost(training_data, lmbda)training_cost.append(cost)print "Cost on train: {}".format(cost)if monitor_training_accuray:acc = self.accuracy(training_data,covert=True)training_accuray.append(acc)print "Acc on train: {} / {}".format(acc,n)if monitor_evaluation_cost:cost = self.total_cost(evaluation_data, lmbda,convert=True)evaluation_cost.append(cost)print "Cost on evaluation: {}".format(cost)if monitor_evaluation_accuracy:acc = self.accuracy(evaluation_data)evaluation_accurary.append(acc)print "Acc on evaluation: {} / {}".format(acc, n_data)printreturn evaluation_cost,evaluation_accurary,training_cost,training_accuray

反向传播

    def backprop(self, x, y):nabla_b = [np.zeros(b.shape) for b in self.biases]nabla_w = [np.zeros(w.shape) for w in self.weights]activation = xactivations = [x]zs = []for b, w in zip(self.biases, self.weights):z = np.dot(w, activation) + bzs.append(z)activation = sigmoid(z)activations.append(activation)delta = (self.cost).delta(zs[-1], activations[-1], y)nabla_b[-1] = deltanabla_w[-1] = np.dot(delta, activations[-2].transpose())for l in xrange(2, self.num_layers):z = zs[-l]sp = sigmoid_prime(z)delta = np.dot(self.weights[-l + 1].transpose(), delta) * spnabla_b[-l] = deltanabla_w[-l] = np.dot(delta, activations[-l - 1].transpose())return (nabla_b, nabla_w)def update_mini_batch(self, mini_batch, eta, lmbda, n):nabla_b = [np.zeros(b.shape) for b in self.biases]nabla_w = [np.zeros(w.shape) for w in self.weights]for x, y in mini_batch:delta_nabla_b, delta_nabla_w = self.backprop(x, y)nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]self.weights = [(1 - eta * (lmbda / n)) * w - (eta / len(mini_batch)) * nw for w, nw inzip(self.weights, nabla_w)]self.biases = [b - (eta / len(mini_batch)) * nb for b, nb in zip(self.biases, nabla_b)]

我们可以看到基本上和Network中一样,前面已经讲解过δ。这里的代码也可以和《机器学习技法》学习笔记12——神经网络中的公式对应:

L2规范化

主要区别是在最后两行更新的时候加入了L2规范化:

求偏导数得:

则:

L1规范化

这里引出了我们这节的另外一个问题:

更改上⾯的代码来实现 L1 规范化

求导得到:


则:

对应的代码应该写为:

  self.weights = [(1 - eta * (lmbda / n)*np.sign(w)) * w - (eta / len(mini_batch)) * nw for w, nw inzip(self.weights, nabla_w)]self.biases = [b - (eta / len(mini_batch)) * nb for b, nb in zip(self.biases, nabla_b)]

测评

有些label,我们需要对其进行二元化处理,然后使用:

def vectorized_result(j):e = np.zeros((10, 1))e[j] = 1.0return e

计算损失率

这会加入L2 规范化

    def total_cost(self, data, lmbda, convert=False):cost = 0.0for x, y in data:a = self.feedforward(x)if convert:y = vectorized_result(y)cost += self.cost.fn(a, y) / len(data)cost += 0.5 * (lmbda / len(data)) * sum(np.linalg.norm(w) ** 2 for w in self.weights)return cost

回到我们之前的L1规范化实现的问题,这里代码可改成:

cost +=  (lmbda / len(data)) * sum(np.linalg.norm(w) for w in self.weights)

计算准确率

和Network中基本上一致

    def accuracy(self,data,covert=False):if covert:results = [(np.argmax(self.feedforward(x)),np.argmax(y)) for (x,y) in data]else:results = [(np.argmax(self.feedforward(x)),y) for (x,y) in data]return sum(int(x==y) for (x,y) in results)

这里写图片描述

这篇关于《neural network and deep learning》题解——ch03 再看手写识别问题题解与源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023050

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1