《机器学习实战》(七)—— AdaBoost(提升树)

2024-06-02 04:38

本文主要是介绍《机器学习实战》(七)—— AdaBoost(提升树),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/u011239443/article/details/77294201

AdaBoost

提升树

例子

将“身体”设为A,“业务”设为B,“潜力”设为C。对该题做大致的求解:

这里我们只计算到了f2,相信读者也知道如何继续往下计算。这里特征的取值较少,所以直接使用是否等于某个取值来作为分支条件。实际中,可以设置是否大于或者小于等于某个阈值来作为分支条件。接下来我们就来看看如何实现提升树。

实现

# -*- coding: utf-8 -*-
from numpy import *# 加载数据
def loadSimpData():datMat = matrix([[ 1. ,  2.1],[ 2. ,  1.1],[ 1.3,  1. ],[ 1. ,  1. ],[ 2. ,  1. ]])classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]return datMat,classLabels# 决策桩分类
# dimen : 选取的特征
# threshVal : 特征的阈值
# threshInseq : 判别大于或者小于等于该阈值
def stumpClassify(dataMat,dimen,threshVal,threshIneq):retArray = ones((shape(dataMat)[0],1))if threshIneq == 'lt':retArray[dataMat[:,dimen] <= threshVal] = -1.0else:retArray[dataMat[:,dimen] > threshVal] = -1.0return retArray#  构建决策树桩
def buildStump(dataArr,classLabels,D):dataMat = mat(dataArr);labelMat = mat(classLabels).Tm,n = shape(dataMat)numSteps = 10.0;bestStump = {};bestClassEst = mat(zeros((m,1)))minError = inffor i in range(n):rangeMin = dataMat[:,i].min();rangeMax = dataMat[:,i].max()stepSize = (rangeMax - rangeMin)/numSteps# 由于是 ‘<= threshVal’,所以要从-1开始,使得出现全都 > threshVal 的情况for j in range(-1,int(numSteps)+1):for inequal in ['lt','gt']:threshVal = rangeMin + j * stepSizepredictedVals = stumpClassify(dataMat,i,threshVal,inequal)errArr = mat(ones((m,1)))errArr[predictedVals == labelMat] = 0weightedError = D.T * errArrif weightedError < minError:minError = weightedErrorbestClassEst = predictedVals.copy()bestStump['dim'] = ibestStump['thresh'] = threshValbestStump['ineq'] = inequalreturn bestStump,minError,bestClassEstdef adaBoostTrainDS(dataArr,classLabels,numIt = 40):# 保存不同的决策树桩weakClassArr = []m = shape(dataArr)[0]# 权值初始化为 1/mD = mat(ones((m,1))/m)aggClassEst = mat(zeros((m,1)))for i in range(numIt):bestStump,error,ClassEst = buildStump(dataArr,classLabels,D)# 见式 8.2alpha = float(0.5*log((1-error)/max(error,1e-16)))bestStump['alpha'] = alphaweakClassArr.append(bestStump)# 见式 8.4expon = multiply(-1*alpha*mat(classLabels).T,ClassEst)D = multiply(D,exp(expon))D = D/D.sum()# 见式 8.6aggClassEst += alpha*ClassEstaggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))errorRate = aggErrors.sum()/mprint ("error rate : ",errorRate)if errorRate == 0:breakreturn weakClassArrdef adaClassify(dataToClass,classifierArr):dataMat = mat(dataToClass)m = shape(dataMat)[0]aggClassEst = mat(zeros((m,1)))for i in range(len(classifierArr)):classEst = stumpClassify(dataMat,classifierArr[i]['dim'],\classifierArr[i]['thresh'], \classifierArr[i]['ineq'])# 见式 8.7aggClassEst += classifierArr[i]['alpha']*classEstprint aggClassEstreturn sign(aggClassEst)

测试

import myAdaboostdataMat,classLabels = myAdaboost.loadSimpData()classifierArray = myAdaboost.adaBoostTrainDS(dataMat,classLabels,30)print myAdaboost.adaClassify([0,0],classifierArray)

结果

('error rate : ', 0.20000000000000001)
('error rate : ', 0.20000000000000001)
('error rate : ', 0.0)
[[-0.69314718]]
[[-1.66610226]]
[[-2.56198199]]
[[-1.]]

这里写图片描述

这篇关于《机器学习实战》(七)—— AdaBoost(提升树)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023047

相关文章

Spring Boot 整合 SSE(Server-Sent Events)实战案例(全网最全)

《SpringBoot整合SSE(Server-SentEvents)实战案例(全网最全)》本文通过实战案例讲解SpringBoot整合SSE技术,涵盖实现原理、代码配置、异常处理及前端交互,... 目录Spring Boot 整合 SSE(Server-Sent Events)1、简述SSE与其他技术的对

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析:

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件