使用迭代最近点 (ICP) 算法在 Open3D 中对齐点云

2024-06-02 03:20

本文主要是介绍使用迭代最近点 (ICP) 算法在 Open3D 中对齐点云,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Open3D 简介及其功能

   Open3D 是一个现代库,它提供了用于处理 3D 数据的各种工具。在其功能中,它提供了高效的数据结构和算法来处理点云、网格等,使其成为在计算机视觉、机器人和图形领域工作的研究人员和从业人员的不错选择。Open3D 的特点之一是它实现了迭代最近点 (ICP) 算法,该算法用于模型对齐任务。

二、Open3D 和 ICP 入门

   迭代最近点 (ICP) 算法是用于对齐 3D 模型的基本技术。它的工作原理是迭代最小化两个点云或一个点云与 3D 模型之间的距离。该算法假设两个点云在不同的方向和/或位置表示相同的对象或场景。ICP 对于机器人和增强现实中的对象识别、定位和映射等任务特别有用。

   要在 Open3D 中使用 ICP,您首先需要安装库。您可以使用 pip 执行此操作:

pip install open3d

   Open3D 在其示例数据集中包含许多模型。安装后,我们可以导入 Open3D 并加载 Stanford Bunny 模型,这是一个用于测试 3D 算法的标准数据集:

import open3d as o3d 
# Load the Bunny mesh
bunny = o3d.data.BunnyMesh()
mesh = o3d.io.read_triangle_mesh(bunny.path)

   接下来,为了使 ICP 算法正常工作,有必要像这样计算顶点法线:

mesh.compute_vertex_normals()

   接下来,放下样本,这样我们就没有那么多点可以拟合了:

# Sample points from the mesh
pcd = mesh.sample_points_poisson_disk(number_of_points=1000)

   要在 Plotly 中将点云可视化为 3D 散点图,可以将 Open3D 点云转换为 NumPy 数组以进行 3D 绘图:

import plotly.graph_objects as go
import numpy as np# Convert Open3D point cloud to NumPy array
xyz = np.asarray(pcd.points)# Create a 3D scatter plot
scatter = go.Scatter3d(x=xyz[:, 0], y=xyz[:, 1], z=xyz[:, 2], mode='markers', marker=dict(size=1))
fig = go.Figure(data=[scatter])
fig.show()

斯坦福兔子点云
在这里插入图片描述

三、旋转模型并查找旋转矩阵

   为了演示 ICP,让我们创建一个 Bunny 模型的旋转版本,方法是将原始模型旋转 45 度,然后使用 ICP 找到原始模型和旋转模型之间的旋转矩阵:

# Apply an arbitrary rotation to the original point cloud
R = o3d.geometry.get_rotation_matrix_from_xyz((np.pi / 4, np.pi / 4, np.pi / 4))
rotated_pcd = pcd.rotate(R, center=(0, 0, 0))

查看旋转的兔子,确保一切正常:

# Convert Open3D point cloud to NumPy array
xyz_rot = np.asarray(rotated_pcd.points)# Create a 3D scatter plot
scatter = go.Scatter3d(x=xyz_rot[:, 0], y=xyz_rot[:, 1], z=xyz[:, 2], mode='markers', marker=dict(size=1.0))
fig = go.Figure(data=[scatter])
fig.show()

在这里插入图片描述
斯坦福兔子旋转 45 度

   现在,我们使用 ICP 来查找原始模型和旋转模型之间的转换矩阵。

# Use ICP to find the rotation
threshold = 0.02  # Distance threshold
trans_init = np.identity(4)  # Initial guess (identity matrix)
trans_init[:3, :3] = R  # We set the initial rotation to the known rotation
reg_p2p = o3d.pipelines.registration.registration_icp(source=rotated_pcd, target=pcd, max_correspondence_distance=threshold,init=trans_init
)# Extract the rotation matrix from the transformation matrix
estimated_rotation_matrix = reg_p2p.transformation[:3, :3]
rotation_matrix = reg_p2p.transformation[:3, :3]
print("Estimated rotation matrix:")
print(rotation_matrix)

   ​ICP发现的原始模型和旋转模型之间的旋转矩阵
在这里插入图片描述

四、验证旋转

   为了验证旋转,我们可以将估计旋转矩阵的逆函数应用于旋转模型,并将其与原始模型进行比较。通过取点之间的均方误差 (MSE),我们可以检查旋转的模型是否在指定的公差范围内恢复到其原始对齐方式:

# Extract the rotation matrix from the transformation matrix
estimated_rotation_matrix = reg_p2p.transformation[:3, :3]# Apply the inverse of the estimated rotation to the rotated point cloud
inverse_rotation_matrix = np.linalg.inv(estimated_rotation_matrix)
rotated_back_pcd = rotated_pcd.rotate(inverse_rotation_matrix, center=(0, 0, 0))# Compare the original point cloud to the one rotated back to its original state
# We can use the mean squared error (MSE) between corresponding points as a metric
original_points = np.asarray(pcd.points)
rotated_back_points = np.asarray(rotated_back_pcd.points)
mse = np.mean(np.linalg.norm(original_points - rotated_back_points, axis=1) ** 2)# Check if the MSE is below a certain tolerance
tolerance = 1e-6
if mse < tolerance:print(f"Test passed: MSE = {mse}")
else:print(f"Test failed: MSE = {mse}")

   假设一切顺利,您应该会看到测试通过的结果,表明点云已重新对齐。

在这里插入图片描述
   显示 ICP 算法的演示到此结束:

   1 在两个未对齐的模型之间查找旋转,以及
   2 使用这些结果将旋转的模型重新对齐回原始方向。

五、使用 ICP 的局限性

   虽然 ICP 是用于模型对齐的强大工具,但它也有其局限性:

  •    ICP 需要良好的初始猜测才能收敛到正确的解决方案,尤其是对于具有大旋转或平移的点云。
  •    该算法可能在对称或无特征的表面上遇到困难,在这些表面上建立正确的对应关系具有挑战性。
  •    异常值和噪声会显著影响 ICP 的性能,从而导致不正确的对齐方式。
  •    ICP 不处理点云之间的尺度差异,因为它假定点云已经处于相同的尺度。
       尽管存在这些局限性,但 ICP 仍然是 3D 数据处理中广泛使用的算法,Open3D 提供了一个用户友好的界面,可将 ICP 应用于各种对齐问题。通过仔细的预处理和参数调整,ICP 可以成为对齐 3D 模型的可靠解决方案。

这篇关于使用迭代最近点 (ICP) 算法在 Open3D 中对齐点云的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022888

相关文章

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

MySQL 衍生表(Derived Tables)的使用

《MySQL衍生表(DerivedTables)的使用》本文主要介绍了MySQL衍生表(DerivedTables)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录一、衍生表简介1.1 衍生表基本用法1.2 自定义列名1.3 衍生表的局限在SQL的查询语句select

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

MySQL分区表的具体使用

《MySQL分区表的具体使用》MySQL分区表通过规则将数据分至不同物理存储,提升管理与查询效率,本文主要介绍了MySQL分区表的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、分区的类型1. Range partition(范围分区)2. List partition(列表分区)3. H