大豆、棉花深度学习数据集大合集

2024-06-02 02:44

本文主要是介绍大豆、棉花深度学习数据集大合集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近收集了一大波关于大豆和棉花的深度学习数据集,主要有叶片的识别、分类、计数以及病害检测等。

数据集的价值

  1. 科研价值:这些数据集为植物学、农业信息技术、机器学习等领域的科研人员提供了宝贵的资源。它们可以用于训练和优化各种深度学习模型,以改进植物识别、分类和病害检测的准确性。
  2. 技术创新:通过分析和利用这些数据集,可以推动农业领域的技术创新。例如,开发更高效的自动化监测系统,用于实时监控作物的生长情况和病害发生,为农民提供及时的决策支持。
  3. 农业生产力提升:准确的大豆和棉花叶片识别、分类和计数有助于优化农业管理,如精准施肥、灌溉和病虫害防治,从而提高作物产量和品质。
  4. 环境保护:通过减少农药和化肥的过量使用,精准农业可以降低对环境的负面影响,实现可持续发展。

应用情况

  1. 智能农业系统:利用这些数据集训练的深度学习模型可以集成到智能农业系统中,实现自动化、智能化的作物管理和决策支持。
  2. 病害预警系统:通过训练模型识别作物叶片上的病害特征,可以开发病害预警系统,帮助农民及时发现并处理病害,减少损失。
  3. 作物产量预测:利用叶片识别、分类和计数等信息,结合其他环境因素(如气候、土壤等),可以建立作物产量预测模型,为农民提供科学的种植建议。
  4. 教育和培训:这些数据集还可以用于教育和培训领域,帮助农业技术人员和学生了解和应用深度学习技术在农业领域的应用。

面临的挑战

尽管这些数据集具有巨大的潜力和价值,但在实际应用中还面临一些挑战,如数据标注的准确性、模型的泛化能力、计算资源的限制等。因此,需要持续投入研发力量,不断改进和优化深度学习模型,以满足农业领域日益增长的需求。

废话不多说,下面逐一介绍这些数据集。

1.大豆单株田间分割数据集

数据格式:图片

是否标注:已标注

标注格式:yolov8

图片数量:594张

查看地址:https://www.dilitanxianjia.com/15527/

数据示意图:

2.大豆田间分割数据集

数据格式:图片

是否标注:已标注

标注格式:yolov8

图片数量:466张

查看地址:https://www.dilitanxianjia.com/15523/

数据示意图:

3.大豆叶片病害识别图片数据集

数据格式:图片

是否标注:未标注

分为3类:叶斑病、锈病、健康

图片数量:1034张

查看地址:https://www.dilitanxianjia.com/15520/

数据示意图:

4.大豆叶片分割图片数据集(包含病虫害镂空)

数据格式:图片

是否标注:已标注

标注格式:yolov8

图片数量:1295张

查看地址:https://www.dilitanxianjia.com/15517/

数据示意图:

5.大豆叶片识别图片数据集

数据格式:图片

是否标注:已标注

标注格式:yolov8

图片数量:230张

查看地址:https://www.dilitanxianjia.com/15514/

数据示意图:

6.大豆叶片图片数据集

数据格式:图片

是否标注:已标注

标注格式:CSV

图片数量:5711张

查看地址:https://www.dilitanxianjia.com/15511/

数据示意图:

7.豆类叶片(健康、病害、虫害)分割识别图片数据集

数据格式:图片

是否标注:已标注

标注格式:yolov

图片数量:1028张

查看地址:https://www.dilitanxianjia.com/15508/

数据示意图:

8.棉花花包识别图像深度学习数据集

数据格式:图片

是否标注:已标注

标注格式:yolov8

图片数量:754张

查看地址:https://www.dilitanxianjia.com/15505/

数据示意图:

9.棉花花包识别图像深度学习数据集1

数据格式:图片

是否标注:已标注

标注格式:yolov8

图片数量:600张

查看地址:https://www.dilitanxianjia.com/15502/

数据示意图:

10.棉花图像识别深度学习数据集

数据格式:图片

是否标注:已标注

标注格式:yolov5

图片数量:464张

查看地址:https://www.dilitanxianjia.com/15499/

数据示意图:

11.无人机视角下大豆田杂草识别图像数据集

数据格式:图片

是否标注:已标注

标注格式:yolov8

图片数量:197张

查看地址:https://www.dilitanxianjia.com/15496/

数据示意图:

请大家持续关注地理探险家,后续及时持续更新相关数据集。

这篇关于大豆、棉花深度学习数据集大合集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022819

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则