GEE 10m 全球 LULC 数据集 ESRI Land Cover

2024-06-01 22:44

本文主要是介绍GEE 10m 全球 LULC 数据集 ESRI Land Cover,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

土地利用土地覆盖(LULC)地图在许多行业部门和发展中国家越来越成为决策者的重要工具。这些地图提供的信息有助于通过更好地理解和量化地球过程和人类活动的影响,从而制定政策和土地管理决策。


ESRI Land Cover 数据介绍

ArcGIS Living Atlas of the World 提供了详细、准确且及时的全球 LULC 地图。该数据是 Esri 和 Impact Observatory 合作的结果。有关数据的更多信息,请参阅 Sentinel-2 10 米土地利用/土地覆盖时间序列。

  • 网站访问链接:https://livingatlas.arcgis.com/landcoverexplorer/

  • 土地利用/土地覆盖(LULC)地图的重要性:

    • 土地利用/土地覆盖(LULC)地图是分析师和决策者在政府、民间社会、工业和金融领域中监测全球环境变化和衡量可持续生计与发展的风险时所需的基础地理空间数据产品。对高层次、自动化的地理空间分析产品有着强烈的需求,这些产品能够将像素转化为非地理空间专家可操作的见解。
  • Sentinel-2 卫星的优势:

    • Sentinel-2 卫星自2015年中期首次发射以来,凭借其高空间分辨率、光谱分辨率和时间分辨率,成为 LULC 制图的优秀候选者。深度学习和可扩展的云计算进步如今提供了所需的分析能力,能够解锁全球卫星影像观测的价值。
  • 利用深度学习创建全球 LULC 地图:

    • 基于一个包含超过 50 亿个人工标记 Sentinel-2 像素的全新大型数据集,我们开发并部署了一种深度学习分割模型,以10米分辨率在 Sentinel-2 数据上创建全球 LULC 地图。该地图实现了最先进的精度,并使时间序列观测的自动化 LULC 制图成为可能。

数据研制流程

  • 论文参考链接:https://ieeexplore.ieee.org/document/9553499/

K. Karra, C. Kontgis, Z. Statman-Weil, J. C. Mazzariello, M. Mathis and S. P. Brumby, “Global land use / land cover with Sentinel 2 and deep learning,” 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021, pp. 4704-4707, doi: 10.1109/IGARSS47720.2021.9553499. keywords: {Deep learning;Industries;Image segmentation;Satellites;Time series analysis;Government;Geoscience and remote sensing;land use land cover;deep learning;segmentation;Sentinel 2},

1 训练数据

  1. 全球、地理平衡的训练数据集

    • 使用了超过 24,000 个 5 公里 × 5 公里的图像片段。
    • 图像片段被手工标记为十个类别:水、树木、草、被淹没的植被、农作物、灌木丛/灌木丛、建筑区域、裸露地面、雪/冰和云。
    • 数据集采用随机分层抽样方法,从 14 个主要生物群落中收集。
  2. 密集标记方法

    • 注释者使用密集标记方法代替单像素标签。
    • 在场景中的各个要素类周围绘制矢量边界。
    • 密集标记使深度学习算法能够探索图像的空间和光谱特征,并且比单像素注释更快地恢复每个像素的标签。

2. 模型开发

  1. UNet 模型训练

    • 使用上述手工标记数据,从头训练了一个大型 UNet 模型。
      • UNet 是一种卷积神经网络架构,最初为生物医学图像分割而开发,也被证明在卫星图像的语义分割任务中有效。
  2. 分割任务

    • 将分割任务表述为一个逐像素分类问题。
    • 包含前述的十个类别以及一个针对未标记像素的额外“无数据”类别。
    • 利用分类交叉熵损失函数,并使用基于每个类别百分比比例的逆对数加权来处理数据集中的类别不平衡问题。

  1. 使用的 Sentinel-2 波段

    • 使用 Sentinel-2 L2A 表面反射校正影像的六个波段(红、绿、蓝、nir、swir1、swir2)。
    • 每个波段都转换为浮点数并在 0 和 1 之间缩放。
  2. 数据增强

    • 通过随机垂直和水平翻转图像进行数据增强。
    • 这样可以引入更多地理模式变化。
  3. 防止过度拟合

    • 在训练期间采用 dropout 技术,在每个批次中随机关闭 UNet 中 20% 的神经元。
      • dropout:一种防止神经网络过度拟合的技术,通过随机丢弃神经元来实现。
  4. 训练过程

    • 该模型经过 100 个 epoch 的训练才收敛。
      • epoch:机器学习中完成一次训练数据集迭代的过程。
    • 采用阶梯式学习率,在验证损失趋于稳定后,学习率会下降一个数量级。

结果表明,借助强大的训练数据集和深度学习模型,可以创建分辨率为 10 米的全球一致的 LULC 地图。我们的模型在十个类别中实现了 85% 的整体准确度,并且考虑到主要混淆因素具有直观意义,我们相信全球地图具有科学依据且实用。未来仍有几个有希望的改进途径。例如,包括 Sentinel-1 辐射校正地面范围检测 (GRD) 数据可以帮助处理所有类别,特别是在区分被淹没的植被与农田以及裸露与灌木丛/灌木方面。此外,添加时间序列特征(如一年内植被健康状况的测量值)可以区分草地、农作物和灌木丛/灌木。
对于表现较差的类别(例如草地、被淹没的植被),额外收集手工标记的训练数据以提供更多跨地域的此类示例可能会提高准确率。我们还计划试验模型架构、类别权重和其他数据增强技术,以提高模型性能和泛化能力。


GEE 使用数据集

以武汉为显示中心,ESRI Global-LULC 10m显示如下:

完整代码

// 加载 ESRI Land Cover 数据集
var esri_lulc10 = ee.ImageCollection("projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m");// 设置可视化参数
var visualization = {bands: ['b1'],min: 1,max: 10,palette: ['1A5BAB', // 水'358221', // 树木'A7D282', // 草'87D19E', // 被淹没的植被'FFDB5C', // 农作物'EECFA8', // 灌木丛/灌木丛'ED022A', // 建筑区域'EDE9E4', // 裸露地面'F2FAFF', // 雪/冰'C8C8C8'  // 云]
};// 定义武汉的区域
var wuhan = ee.Geometry.Rectangle([113.6938, 29.9701, 115.0227, 31.2198]);// 裁剪函数
function clip(image) {return image.clip(wuhan);
}// 裁剪数据集
var clippedEsriLulc10 = esri_lulc10.map(clip);// 将裁剪后的 ESRI Land Cover 数据集添加到地图
Map.addLayer(clippedEsriLulc10.mosaic(), visualization, 'ESRI Land Cover - Wuhan');// 设置地图中心和缩放级别以显示湖北武汉
Map.setCenter(114.3055, 30.5928, 10); // 经度、纬度、缩放级别

代码说明

  1. 加载数据集

    var esri_lulc10 = ee.ImageCollection("projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m");
    

    使用 ee.ImageCollection 函数加载 ESRI Land Cover 数据集。

  2. 设置可视化参数

    var visualization = {bands: ['b1'],min: 1,max: 10,palette: ['1A5BAB', // 水'358221', // 树木'A7D282', // 草'87D19E', // 被淹没的植被'FFDB5C', // 农作物'EECFA8', // 灌木丛/灌木丛'ED022A', // 建筑区域'EDE9E4', // 裸露地面'F2FAFF', // 雪/冰'C8C8C8'  // 云]
    };
    

    设置显示图层的波段、颜色范围和颜色调色板。

  3. 定义武汉的区域

    var wuhan = ee.Geometry.Rectangle([113.6938, 29.9701, 115.0227, 31.2198]);
    

    使用 ee.Geometry.Rectangle 函数定义武汉的区域。

  4. 裁剪函数

    function clip(image) {return image.clip(wuhan);
    }
    

    定义一个裁剪函数,将图像裁剪到武汉区域。

  5. 裁剪数据集

    var clippedEsriLulc10 = esri_lulc10.map(clip);
    

    使用 map 函数对数据集进行裁剪。

  6. 将裁剪后的数据集添加到地图

    Map.addLayer(clippedEsriLulc10.mosaic(), visualization, 'ESRI Land Cover - Wuhan');
    

    使用 Map.addLayer 函数将裁剪后的数据集添加到地图。

  7. 设置地图中心和缩放级别

    Map.setCenter(114.3055, 30.5928, 10);
    

    使用 Map.setCenter 函数设置地图中心为湖北武汉的经度(114.3055)和纬度(30.5928),缩放级别为 10。

ESRI Land Cover数据集是一个强大的资源,它在GEE平台上的应用为研究人员和决策者提供了深入洞察地球表面变化的能力。通过本博客的介绍,可以开始在GEE中探索和分析ESRI Land Cover数据集,以支持研究和项目。

如果这对您有所帮助,希望点赞支持一下作者! 😊

点击查看原文

file

这篇关于GEE 10m 全球 LULC 数据集 ESRI Land Cover的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022305

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒