机器学习的基础算法--牛顿法

2024-06-01 16:48

本文主要是介绍机器学习的基础算法--牛顿法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数(x)的泰勒级数的前面几项来寻找方程(x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

把非线性函数  在  处展开成泰勒级数,取其线性部分,作为非线性方程的近似方程, 则有 

设  ,则其解为 

因为这是利用泰勒公式的一阶展开,  ,这里并不是完全相等,而是近似相等,即去掉泰勒级数2级以上的项,这里求得的  并不能让  ,只能说  的值比  更接近  ,于是乎,迭代求解的想法就很自然了,再把f(x)在x1 处展开为泰勒级数,取其线性部分为  的近似方程,若  ,则得  如此继续下去,得到牛顿法的迭代公式:

  ,通过迭代,这个式子必然在  的时候收敛。上述过程可以用一张动图来体现:

那么牛顿法对比于梯度下降有什么优势了?不难发现牛顿法是二阶收敛,收敛速度明显要高于梯度下降法。举个很简单的例子,梯度下降是考虑下山的坡度最陡,而牛顿法则是不仅要考虑下坡陡,还要考虑下坡变化的速率更快。

牛顿法主要可以解决两个问题,第一个是求根问题,比如一个一元五次方程的根,我们用代数的方法是求不出解的(阿贝尔和伽罗瓦的工作证明了一般一元五次方程没有根式解),而我们可以用牛顿法通过计算机来逼近对应的根;另外一个问题就是最优化的问题,这也是机器学习中和梯度下降法使用频率相当的一种优化算法。这里有几个常用的矩阵,是针对多元函数的问题,即雅克比矩阵和海森矩阵。简单介绍一下二者,雅克比矩阵为函数对各自变量的一阶导数,海森矩阵为函数对自变量的二次微分。形式分别如下:

要想实现多元函数的优化问题,必须使用这两个矩阵进行计算。

牛顿法利用计算机实现的整体思路:

求解最优化问题,一般是求解极大值或者极小值的问题,即目标函数导数求零点的问题,f' = 0;

把f(x)用泰勒公式展开到二阶,即:

等号左边和f(x)近似相等,抵消。然后对求导,得到:

                                                                          

更进一步:

                                                                                

然后得到迭代式子:

推广到多元函数,应用雅克比矩阵和海森矩阵,则有:

1、先决条件

暂无先决条件。

2、算法参数的初始化

这里我们需要初始化一些变量,比如epsilon(阈值),迭代次数N,变量初始值x0,y0……

3、算法的过程:这一步很重要,这里是变量更新的重要步骤;

1、确定对应的目标函数,并对目标函数进行优化,求解最有解,f(x0,x1,......)

2、对目标函数分别求解一阶偏导数和二阶偏导数,分别构建雅克比矩阵和海森矩阵,并用海森矩阵的逆左乘,雅克比矩阵右乘变量,即得到变化度量值。

3、确定迭代次数和变化度量值小于阈值epsilon,此时算法终止,而变量也会停止更新,形成最优参数,否则,进入步骤4.

以下是用python实现二元函数求解最优化值的code;

import numpy as np
def newton_method(x0,y0,N,E):X1,X2,Y,Y_d=[],[],[],[]#X1,X2为二元函数的两个特征,Y为标签,Y_d为n=1#迭代次数记录X1.append(x0)X2.append(y0)Y.append(f(x0,y0))#算法过程第一步,确定目标函数f(x0,y0),对它进行参数优化ee=g(x0,y0)#初始化阈值e=(ee[0,0]**2+ee[1,0]**2)**0.5#二元函数求解的一阶导数为一个2*1维的雅克比矩阵,一种刻画变化的函数#算法迭代过程while n<N and e>E:n+=1#迭代两个变量X=-np.dot(np.linalg.inv(G(x0,y0)),g(x0,y0))x0+=X[0,0]y0+=X[1,0]ee=g(x0,y0)e=(ee[0,0]**2+ee[1,0]**2)**0.5#更新阈值print(n)print (x0,y0,N,E)
f=lambda x,y:3*x**2+3*y**2-x**2*y#声明目标函数
g=lambda x,y:np.array([[6*x-2*x*y],[6*y-x**2]])#构建目标函数的雅克比矩阵
G=lambda x,y:np.array([[6-2*y,-2*x],[-2*x,6]])#构建目标函数的海森矩阵
x0,y0,N,E=-2,4,10,10**(-6)
newton_method(x0,y0,N,E)

out:

2
3
4
5
6
-4.242640687119334 3.0000000000000355 10 1e-06

在这里我还没有弄懂变化度量的取值,这也是仿照网络上某位大神的code写的,主要为了校核一下算法是否正确,好吧,这是目前我碰到最难的算法,不借助numpy包,我都不知道该怎么求海森矩阵的逆。

这篇关于机器学习的基础算法--牛顿法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021562

相关文章

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

JavaScript装饰器从基础到实战教程

《JavaScript装饰器从基础到实战教程》装饰器是js中一种声明式语法特性,用于在不修改原始代码的情况下,动态扩展类、方法、属性或参数的行为,本文将从基础概念入手,逐步讲解装饰器的类型、用法、进阶... 目录一、装饰器基础概念1.1 什么是装饰器?1.2 装饰器的语法1.3 装饰器的执行时机二、装饰器的

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、