修改ModelLink在RTX3090完成预训练、微调、推理、评估以及TRT-LLM转换、推理、性能测试

本文主要是介绍修改ModelLink在RTX3090完成预训练、微调、推理、评估以及TRT-LLM转换、推理、性能测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

修改ModelLink在RTX3090完成预训练、微调、推理、评估以及TRT-LLM转换、推理、性能测试

  • 1 参考文档
  • 2 测试环境
  • 3 创建容器
  • 4 安装AscendSpeed、ModelLink
  • 5 下载LLAMA2-7B预训练权重和词表
  • 6 huggingface模型的推理及性能测试
  • 7.1 修改torch,deepspeed规避缺失npu环境的问题
  • 7.2 修改点ModelLink规避缺失npu环境的问题
  • 8 将权重从huggingface格式转化为AscendSpeed格式(PTD模式)
  • 9 下载alpaca数据集并查看第一条记录
  • 10.1 将alpacal转换成LLM预训练数据集格式
  • 10.2 开始预训练
  • 11.1 将alpacal转换成LLM指令微调微调数据集格式
  • 11.2 开始全参微调
  • 11.3 采用ModelLink进行指令微调模型的推理测试
  • 11.4.1 准备MMLU精度测试数据集
  • 11.4.2 采用ModelLink进行指令微调模型的MMLU精度测试
  • 11.5 将模型从Megatron格式转回HuggingFace格式
  • 12 指令微调后HuggingFace格式模型的推理测试
  • 13 TensorRT-LLM推理测试
  • 14 异常处理--提示tensorrt找不到

背景:因为没有华为的训练卡,又想跑ModelLink,顺便熟悉LLM从训练到部署的完全过程,记录备用

1 参考文档

  • ModelLink LLAMA2-7B
  • TensorRT-LLM

2 测试环境

  • 8张 NVIDIA GeForce RTX 3090 ; Driver Version: 530.30.02 ; CUDA Version: 12.1

3 创建容器

docker run --gpus all --shm-size=32g -ti -e NVIDIA_VISIBLE_DEVICES=all \--privileged --net=host -v $PWD:/home \-w /home --name ModelLink \nvcr.io/nvidia/pytorch:23.07-py3 /bin/bash
mkdir -p /home/ModelLink

4 安装AscendSpeed、ModelLink

cd /home/ModelLink
git clone https://gitee.com/ascend/ModelLink.git 
git clone https://github.com/NVIDIA/Megatron-LM.git
cd Megatron-LM
git checkout -f bcce6f
cp -r megatron ../ModelLink/
cd ..
cd ModelLink# 非必须,为了生成diff,看看我修改了哪些地方
git add * -f
git commit -m "add"mkdir logs
mkdir model_from_hf
mkdir dataset
mkdir ckpt#安装AscendSpeed
cd /home/ModelLink
git clone https://gitee.com/ascend/AscendSpeed.git
cd AscendSpeed
git checkout 224ae35e8fc96778f957029d1371ddb623452a50
pip install -r requirements.txt  -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install -e .
cd ..#安装deepspeed
pip install deepspeed#安装ModelLink
cd /home/ModelLink/ModelLink
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install -e .#其它
pip uninstall transformer-engine -y #不卸载会报错,与容器里的torch版本不兼容

5 下载LLAMA2-7B预训练权重和词表

cd /home/ModelLink
mkdir -p llama-2-7b-hf
cd llama-2-7b-hf
wget https://huggingface.co/daryl149/llama-2-7b-hf/resolve/main/config.json
wget https://huggingface.co/daryl149/llama-2-7b-hf/resolve/main/generation_config.json
wget https://huggingface.co/daryl149/llama-2-7b-hf/resolve/main/pytorch_model-00001-of-00002.bin
wget https://huggingface.co/daryl149/llama-2-7b-hf/resolve/main/pytorch_model-00002-of-00002.bin
wget https://huggingface.co/daryl149/llama-2-7b-hf/resolve/main/pytorch_model.bin.index.json
wget https://huggingface.co/daryl149/llama-2-7b-hf/resolve/main/special_tokens_map.json
wget https://huggingface.co/daryl149/llama-2-7b-hf/resolve/main/tokenizer.json
wget https://huggingface.co/daryl149/llama-2-7b-hf/resolve/main/tokenizer.model
wget https://huggingface.co/daryl149/llama-2-7b-hf/resolve/main/tokenizer_config.json

6 huggingface模型的推理及性能测试

cd /home/ModelLink
tee torch_infer.py <<-'EOF'
import sys
import os
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig
import torch
import time
import numpy as np
torch.cuda.empty_cache()
gc.collect()
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"device = torch.device("cuda:4" if torch.cuda.is_available() else "cpu")
model_name = sys.argv[1]import json
import torch
from torch.utils.data import Dataset, DataLoaderclass TextGenerationDataset(Dataset):def __init__(self, json_data):self.data = json.loads(json_data)def __len__(self):return len(self.data)def __getitem__(self, idx):item = self.data[idx]input_text = item['input']expected_output = item['expected_output']return input_text, expected_output# 创建 Dataset 实例
json_data =r'''
[{"input": "Give three tips for staying healthy", "expected_output": "TODO"}
]
'''def get_gpu_mem_usage():allocated_memory = torch.cuda.memory_allocated(device) / (1024 ** 2)max_allocated_memory = torch.cuda.max_memory_allocated(device) / (1024 ** 2)cached_memory = torch.cuda.memory_reserved(device) / (1024 ** 2)    max_cached_memory = torch.cuda.max_memory_reserved(device) / (1024 ** 2)return np.array([allocated_memory,max_allocated_memory,cached_memory,max_cached_memory])def load_model_fp16():model = AutoModelForCausalLM.from_pretrained(model_name).half().to(device)return modeldef predict(model,tokenizer,test_dataloader):global devicedataloader_iter = iter(test_dataloader)input_text, expected_output=next(dataloader_iter)inputs = tokenizer(input_text, return_tensors="pt").to(device)for _ in range(3):torch.manual_seed(42)start_time = time.time()with torch.no_grad():outputs = model.generate(**inputs, max_new_tokens=1)first_token_time = time.time() - start_timefirst_token = tokenizer.decode(outputs[0], skip_special_tokens=True)torch.manual_seed(42)start_time = time.time()with torch.no_grad():outputs = model.generate(**inputs,max_length=128)total_time = time.time() - start_timegenerated_tokens = len(outputs[0]) - len(inputs["input_ids"][0])tokens_per_second = generated_tokens / total_timeresponse = tokenizer.decode(outputs[0], skip_special_tokens=True)print("\n\n---------------------------------------- Response -------------------------------------")print(f"{response}")print("---------------------------------------------------------------------------------------")print(f"Time taken for first token: {first_token_time:.4f} seconds")print(f"Total time taken: {total_time:.4f} seconds")print(f"Number of tokens generated: {generated_tokens}")print(f"Tokens per second: {tokens_per_second:.2f}")test_dataset = TextGenerationDataset(json_data)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False)tokenizer = AutoTokenizer.from_pretrained(model_name)
model=load_model_fp16()
mem_usage_0=get_gpu_mem_usage()
predict(model,tokenizer,test_dataloader)
mem_usage_1=get_gpu_mem_usage()print(f"BEFORE MA: {mem_usage_0[0]:.2f} MMA: {mem_usage_0[1]:.2f} CA: {mem_usage_0[2]:.2f} MCA: {mem_usage_0[3]:.2f}")
print(f"AFTER  MA: {mem_usage_1[0]:.2f} MMA: {mem_usage_1[1]:.2f} CA: {mem_usage_1[2]:.2f} MCA: {mem_usage_1[3]:.2f}")
diff=mem_usage_1-mem_usage_0
print(f"DIFF   MA: {diff[0]:.2f} MMA: {diff[1]:.2f} CA: {diff[2]:.2f} MCA: {diff[3]:.2f}")
EOF
python3 torch_infer.py ./llama-2-7b-hf

输出:(40.15 tps)

---------------------------------------- Response -------------------------------------
Give three tips for staying healthy during the holidays.
The holidays are a time of celebration and joy, but they can also be a time of stress and overindulgence. Here are three tips for staying healthy during the holidays:
1. Eat healthy foods.
2. Exercise regularly.
3. Get enough sleep.
What are some of the most common health problems during the holidays?
The most common health problems during the holidays are colds, flu, and stomach problems.
What are some of
---------------------------------------------------------------------------------------
Time taken for first token: 0.0251 seconds
Total time taken: 2.9637 seconds
Number of tokens generated: 119
Tokens per second: 40.15
BEFORE MA: 12884.52 MMA: 12884.52 CA: 12886.00 MCA: 12886.00
AFTER  MA: 12892.65 MMA: 13019.47 CA: 13036.00 MCA: 13036.00
DIFF   MA: 8.12 MMA: 134.94 CA: 150.00 MCA: 150.00

7.1 修改torch,deepspeed规避缺失npu环境的问题

tee -a /usr/local/lib/python3.10/dist-packages/torch/__init__.py <<-'EOF'
class FakeDevice(object):def __init__(self, name=""):self.name = namedef __getattr__(self, item):return FakeDevice(f"{self.name}.{item}")def __call__(self, *args, **kwargs):return 0torch.npu = FakeDevice("torch.npu")
fake_torch_npu = FakeDevice("torch_npu")
fake_deepspeed_npu = FakeDevice("deepspeed_npu")sys.modules.update({"torch.npu": torch.npu,"torch.npu.contrib": torch.npu.contrib,"torch_npu": fake_torch_npu,"torch_npu.utils": fake_torch_npu.utils,"torch_npu.contrib": fake_torch_npu.contrib,"torch_npu.testing": fake_torch_npu.testing,"torch_npu.testing.testcase": fake_torch_npu.testing.testcase,"deepspeed_npu": fake_deepspeed_npu
})
EOF
sed -i 's/accelerator_name = "npu"/accelerator_name = "cuda"/g' /usr/local/lib/python3.10/dist-packages/deepspeed/accelerator/real_accelerator.py

7.2 修改点ModelLink规避缺失npu环境的问题

diff --git a/megatron/optimizer/__init__.py b/megatron/optimizer/__init__.py
index 33744a2..b8e2553 100644
--- a/megatron/optimizer/__init__.py
+++ b/megatron/optimizer/__init__.py
@@ -1,7 +1,9 @@# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.-from apex.optimizers import FusedAdam as Adam
-from apex.optimizers import FusedSGD as SGD
+#from apex.optimizers import FusedAdam as Adam
+#from apex.optimizers import FusedSGD as SGD
+from torch.optim import SGD
+from torch.optim import Adamfrom megatron import get_argsdiff --git a/megatron/optimizer/distrib_optimizer.py b/megatron/optimizer/distrib_optimizer.py
index d58b1b0..ded0ba7 100644
--- a/megatron/optimizer/distrib_optimizer.py
+++ b/megatron/optimizer/distrib_optimizer.py
@@ -3,7 +3,8 @@"""Megatron distributed optimizer."""-from apex.optimizers import FusedAdam as Adam
+#from apex.optimizers import FusedAdam as Adam
+from torch.optim import Adamimport mathimport torchdiff --git a/modellink/__init__.py b/modellink/__init__.py
index a2cb976..682cf28 100644
--- a/modellink/__init__.py
+++ b/modellink/__init__.py
@@ -14,6 +14,32 @@# limitations under the License.import logging
+import torch
+import sys
+class FakeDevice(object):
+    def __init__(self, name=""):
+        self.name = name
+    def __getattr__(self, item):
+        return FakeDevice(f"{self.name}.{item}")
+    def __call__(self, *args, **kwargs):
+        return 0
+
+torch.npu = FakeDevice("torch.npu")
+fake_torch_npu = FakeDevice("torch_npu")
+fake_deepspeed_npu = FakeDevice("deepspeed_npu")
+
+sys.modules.update({
+    "torch.npu": torch.npu,
+    "torch.npu.contrib": torch.npu.contrib,
+    "torch_npu": fake_torch_npu,
+    "torch_npu.npu": fake_torch_npu.npu,
+    "torch_npu.utils": fake_torch_npu.utils,
+    "torch_npu.contrib": fake_torch_npu.contrib,
+    "torch_npu.testing": fake_torch_npu.testing,
+    "torch_npu.testing.testcase": fake_torch_npu.testing.testcase,
+    "deepspeed_npu": fake_deepspeed_npu
+})
+try:import torch_npu
diff --git a/modellink/model/transformer.py b/modellink/model/transformer.py
index bd1ef11..9745a4b 100644
--- a/modellink/model/transformer.py
+++ b/modellink/model/transformer.py
@@ -442,9 +442,9 @@ class FlashSelfAttention(torch.nn.Module):if not hasattr(self, 'attention_mask') or self.attention_mask.shape[0] != seq_length:if use_sliding_windows:self.attention_mask = torch.triu(
-                    torch.ones(self.FA_SPARSE_ATTN_MASK_LEN, self.FA_SPARSE_ATTN_MASK_LEN), 1).bool().npu()
+                    torch.ones(self.FA_SPARSE_ATTN_MASK_LEN, self.FA_SPARSE_ATTN_MASK_LEN), 1).bool().cuda()else:
-                self.attention_mask = torch.triu(torch.ones(seq_length, seq_length), 1).bool().npu()
+                self.attention_mask = torch.triu(torch.ones(seq_length, seq_length), 1).bool().cuda()q, k, v = [rearrange(x, 's b h d -> s b (h d)') for x in [q, k, v]]
diff --git a/requirements.txt b/requirements.txt
index 3cb83fd..dd9cb61 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -10,8 +10,8 @@ datasetspybind11acceleratesix
-torch==2.1.0
-torchvision==0.16.0
+#torch==2.1.0
+#torchvision==0.16.0protobufpeft==0.7.1
-tiktoken
\ No newline at end of file
+tiktoken
diff --git a/tools/checkpoint/convert_ckpt.py b/tools/checkpoint/convert_ckpt.py
index 5c71645..6cc1dfd 100644
--- a/tools/checkpoint/convert_ckpt.py
+++ b/tools/checkpoint/convert_ckpt.py
@@ -80,6 +80,9 @@ def main():loader.add_arguments(parser)saver.add_arguments(parser)+    import torch
+    torch.multiprocessing.set_start_method('spawn')
+args = parser.parse_args()queue = mp.Queue(maxsize=args.max_queue_size)

8 将权重从huggingface格式转化为AscendSpeed格式(PTD模式)

cd /home/ModelLink/ModelLink
rm ../model_weights -rf
mkdir -p ../model_weights
python tools/checkpoint/convert_ckpt.py \--model-type GPT \--loader llama2_hf \--saver megatron \--target-tensor-parallel-size 8 \--target-pipeline-parallel-size 1 \--load-dir ../llama-2-7b-hf \--save-dir ../model_weights/llama-2-7b-hf-v0.1-tp8-pp1/ \--tokenizer-model ../llama-2-7b-hf/tokenizer.model

9 下载alpaca数据集并查看第一条记录

cd /home/ModelLink
mkdir dataset_llama2
wget https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet -O dataset_llama2/train-00000-of-00001-a09b74b3ef9c3b56.parquet
#查看第一条记录
python -c "import pandas as pd;df = pd.read_parquet('dataset_llama2/train-00000-of-00001-a09b74b3ef9c3b56.parquet');first_row = df.iloc[0];print(first_row)"

输出

instruction                 Give three tips for staying healthy.
input
output         1.Eat a balanced diet and make sure to include...
text           Below is an instruction that describes a task....
Name: 0, dtype: object

10.1 将alpacal转换成LLM预训练数据集格式

cd /home/ModelLink/ModelLink
rm -rf ../dataset
mkdir -p ../dataset/llama-2-7b-hf/
python ./tools/preprocess_data.py \--input ../dataset_llama2/train-00000-of-00001-a09b74b3ef9c3b56.parquet \--tokenizer-name-or-path ../llama-2-7b-hf/ \--output-prefix ../dataset/llama-2-7b-hf/alpaca \--workers 4 \--log-interval 1000 \--tokenizer-type PretrainedFromHF

10.2 开始预训练

因内存不足,将batchsize改为1024,优化器变成sgd

export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))CKPT_LOAD_DIR="../model_weights/llama-2-7b-hf-v0.1-tp8-pp1/"
CKPT_SAVE_DIR="./ckpt/llama-2-7b-hf/"
TOKENIZER_MODEL="../llama-2-7b-hf/tokenizer.model"  #词表路径
DATA_PATH="../dataset/llama-2-7b-hf/alpaca_text_document"  #数据集路径TP=8
PP=1DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE \--nnodes $NNODES \--node_rank $NODE_RANK \--master_addr $MASTER_ADDR \--master_port $MASTER_PORT
"GPT_ARGS="--tensor-model-parallel-size ${TP} \--pipeline-model-parallel-size ${PP} \--sequence-parallel \--num-layers 32 \--hidden-size 4096 \--ffn-hidden-size 11008 \--num-attention-heads 32 \--tokenizer-type Llama2Tokenizer \--tokenizer-model ${TOKENIZER_MODEL} \--seq-length 1024 \--max-position-embeddings 1024 \--micro-batch-size 1 \--global-batch-size 32 \--make-vocab-size-divisible-by 1 \--lr 1.25e-6 \--train-iters 5000 \--lr-decay-style cosine \--untie-embeddings-and-output-weights \--disable-bias-linear \--attention-dropout 0.0 \--init-method-std 0.01 \--hidden-dropout 0.0 \--position-embedding-type rope \--normalization RMSNorm \--swiglu \--no-masked-softmax-fusion \--attention-softmax-in-fp32 \--min-lr 1.25e-7 \--weight-decay 1e-1 \--lr-warmup-fraction 0.01 \--clip-grad 1.0 \--adam-beta1 0.9 \--initial-loss-scale 65536 \--adam-beta2 0.95 \--no-gradient-accumulation-fusion \--no-load-optim \--no-load-rng \--optimizer sgd \--fp16
"DATA_ARGS="--data-path $DATA_PATH \--split 949,50,1
"OUTPUT_ARGS="--log-interval 1 \--save-interval 15 \--eval-interval 15 \--exit-interval 15--eval-iters 10 \
"CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \$GPT_ARGS \$DATA_ARGS \$OUTPUT_ARGS \--distributed-backend nccl \--load $CKPT_LOAD_DIR \--save $CKPT_SAVE_DIR 

输出:

+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 530.30.02              Driver Version: 530.30.02    CUDA Version: 12.1     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                  Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf            Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 3090         On | 00000000:01:00.0 Off |                  N/A |
| 54%   58C    P2              178W / 350W|  18256MiB / 24576MiB |     99%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce RTX 3090         On | 00000000:25:00.0 Off |                  N/A |
| 53%   58C    P2              189W / 350W|  18260MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   2  NVIDIA GeForce RTX 3090         On | 00000000:41:00.0 Off |                  N/A |
| 54%   57C    P2              184W / 350W|  18252MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   3  NVIDIA GeForce RTX 3090         On | 00000000:61:00.0 Off |                  N/A |
| 46%   52C    P2              175W / 350W|  18308MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   4  NVIDIA GeForce RTX 3090         On | 00000000:81:00.0 Off |                  N/A |
| 57%   58C    P2              174W / 350W|  18256MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   5  NVIDIA GeForce RTX 3090         On | 00000000:A1:00.0 Off |                  N/A |
| 46%   57C    P2              174W / 350W|  18338MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   6  NVIDIA GeForce RTX 3090         On | 00000000:C1:00.0 Off |                  N/A |
| 51%   55C    P2              182W / 350W|  18316MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   7  NVIDIA GeForce RTX 3090         On | 00000000:E1:00.0 Off |                  N/A |
| 48%   53C    P2              175W / 350W|  18328MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|    0   N/A  N/A     50516      C   /usr/bin/python                           18254MiB |
|    1   N/A  N/A     50517      C   /usr/bin/python                           18258MiB |
|    2   N/A  N/A     50518      C   /usr/bin/python                           18250MiB |
|    3   N/A  N/A     50519      C   /usr/bin/python                           18306MiB |
|    4   N/A  N/A     50520      C   /usr/bin/python                           18254MiB |
|    5   N/A  N/A     50521      C   /usr/bin/python                           18336MiB |
|    6   N/A  N/A     50522      C   /usr/bin/python                           18314MiB |
|    7   N/A  N/A     50523      C   /usr/bin/python                           18326MiB |
+---------------------------------------------------------------------------------------+
training ...
[before the start of training step] datetime: 2024-05-31 06:12:35iteration        2/    5000 | consumed samples:           64 | elapsed time per iteration (ms): 42203.8 | learning rate: 2.500E-08 | global batch size:    32 | lm loss: 1.413504E+00 | loss scale: 65536.0 | grad norm: 3.595 | number of skipped iterations:   0 | number of nan iterations:   0 |
[Rank 6] (after 2 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.30908203125 | reserved: 17666.0 | max reserved: 17666.0
[Rank 2] (after 2 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.30908203125 | reserved: 17666.0 | max reserved: 17666.0
[Rank 5] (after 2 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.30908203125 | reserved: 17666.0 | max reserved: 17666.0
[Rank 4] (after 2 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.30908203125 | reserved: 17670.0 | max reserved: 17670.0
[Rank 1] (after 2 iterations) memory (MB) | allocated: 13043.18505859375 | max allocated: 16303.18408203125 | reserved: 17674.0 | max reserved: 17674.0
[Rank 3] (after 2 iterations) memory (MB) | allocated: 13043.18505859375 | max allocated: 16303.18408203125 | reserved: 17658.0 | max reserved: 17658.0
[Rank 7] (after 2 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.30908203125 | reserved: 17678.0 | max reserved: 17678.0
[Rank 0] (after 2 iterations) memory (MB) | allocated: 13043.18505859375 | max allocated: 16303.18408203125 | reserved: 17670.0 | max reserved: 17670.0iteration        3/    5000 | consumed samples:           96 | elapsed time per iteration (ms): 39887.2 | learning rate: 5.000E-08 | global batch size:    32 | lm loss: 1.355680E+00 | loss scale: 65536.0 | grad norm: 3.954 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        4/    5000 | consumed samples:          128 | elapsed time per iteration (ms): 39955.4 | learning rate: 7.500E-08 | global batch size:    32 | lm loss: 1.411086E+00 | loss scale: 65536.0 | grad norm: 3.844 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        5/    5000 | consumed samples:          160 | elapsed time per iteration (ms): 39904.5 | learning rate: 1.000E-07 | global batch size:    32 | lm loss: 1.387277E+00 | loss scale: 65536.0 | grad norm: 3.820 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        6/    5000 | consumed samples:          192 | elapsed time per iteration (ms): 39893.3 | learning rate: 1.250E-07 | global batch size:    32 | lm loss: 1.375117E+00 | loss scale: 65536.0 | grad norm: 4.150 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        7/    5000 | consumed samples:          224 | elapsed time per iteration (ms): 39911.5 | learning rate: 1.500E-07 | global batch size:    32 | lm loss: 1.372537E+00 | loss scale: 65536.0 | grad norm: 3.742 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        8/    5000 | consumed samples:          256 | elapsed time per iteration (ms): 39928.2 | learning rate: 1.750E-07 | global batch size:    32 | lm loss: 1.371606E+00 | loss scale: 65536.0 | grad norm: 3.806 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        9/    5000 | consumed samples:          288 | elapsed time per iteration (ms): 40145.0 | learning rate: 2.000E-07 | global batch size:    32 | lm loss: 1.396583E+00 | loss scale: 65536.0 | grad norm: 4.110 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       10/    5000 | consumed samples:          320 | elapsed time per iteration (ms): 39902.6 | learning rate: 2.250E-07 | global batch size:    32 | lm loss: 1.378992E+00 | loss scale: 65536.0 | grad norm: 3.984 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       11/    5000 | consumed samples:          352 | elapsed time per iteration (ms): 39896.7 | learning rate: 2.500E-07 | global batch size:    32 | lm loss: 1.361869E+00 | loss scale: 65536.0 | grad norm: 4.185 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       12/    5000 | consumed samples:          384 | elapsed time per iteration (ms): 39892.9 | learning rate: 2.750E-07 | global batch size:    32 | lm loss: 1.380939E+00 | loss scale: 65536.0 | grad norm: 3.436 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       13/    5000 | consumed samples:          416 | elapsed time per iteration (ms): 39925.1 | learning rate: 3.000E-07 | global batch size:    32 | lm loss: 1.426522E+00 | loss scale: 65536.0 | grad norm: 4.136 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       14/    5000 | consumed samples:          448 | elapsed time per iteration (ms): 39911.0 | learning rate: 3.250E-07 | global batch size:    32 | lm loss: 1.367694E+00 | loss scale: 65536.0 | grad norm: 3.859 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       15/    5000 | consumed samples:          480 | elapsed time per iteration (ms): 39910.0 | learning rate: 3.500E-07 | global batch size:    32 | lm loss: 1.414699E+00 | loss scale: 65536.0 | grad norm: 4.009 | number of skipped iterations:   0 | number of nan iterations:   0 |
(min, max) time across ranks (ms):evaluate .......................................: (161025.27, 161025.82)
----------------------------------------------------------------------------------------------validation loss at iteration 15 | lm loss value: 1.410507E+00 | lm loss PPL: 4.098031E+00 |
----------------------------------------------------------------------------------------------
saving checkpoint at iteration      15 to ./ckpt/llama-2-7b-hf/successfully saved checkpoint at iteration      15 to ./ckpt/llama-2-7b-hf/
(min, max) time across ranks (ms):save-checkpoint ................................: (87862.41, 87862.74)
[exiting program at iteration 15] datetime: 2024-05-31 06:26:05

11.1 将alpacal转换成LLM指令微调微调数据集格式

cd /home/ModelLink/ModelLink
rm -rf ../finetune_dataset
mkdir -p ../finetune_dataset/llama-2-7b-hf/
python ./tools/preprocess_data.py \--input ../dataset_llama2/train-00000-of-00001-a09b74b3ef9c3b56.parquet \--tokenizer-name-or-path ../llama-2-7b-hf/  \--output-prefix ../finetune_dataset/llama-2-7b-hf/alpaca \--workers 4 \--log-interval 1000 \--tokenizer-type PretrainedFromHF \--handler-name GeneralInstructionHandler \--append-eod

11.2 开始全参微调

**加载前面预训练后的权值./ckpt/llama-2-7b-hf **

cd /home/ModelLink/ModelLink
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))CKPT_PATH="./ckpt/llama-2-7b-hf/"
CKPT_SAVE_DIR="./ckpt/llama-2-7b-hf-finetune/"
TOKENIZER_MODEL="../llama-2-7b-hf/tokenizer.model"  #词表路径
DATA_PATH="../finetune_dataset/llama-2-7b-hf/alpaca"
TOKENIZER_PATH="../llama-2-7b-hf/"TP=8
PP=1DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE \--nnodes $NNODES \--node_rank $NODE_RANK \--master_addr $MASTER_ADDR \--master_port $MASTER_PORT
"GPT_ARGS="--tensor-model-parallel-size ${TP} \--pipeline-model-parallel-size ${PP} \--sequence-parallel \--num-layers 32 \--hidden-size 4096 \--ffn-hidden-size 11008 \--num-attention-heads 32 \--tokenizer-type Llama2Tokenizer \--tokenizer-model ${TOKENIZER_MODEL} \--seq-length 1024 \--max-position-embeddings 1024 \--micro-batch-size 1 \--global-batch-size 32 \--make-vocab-size-divisible-by 1 \--lr 1.25e-6 \--train-iters 5000 \--lr-decay-style cosine \--untie-embeddings-and-output-weights \--disable-bias-linear \--attention-dropout 0.0 \--init-method-std 0.01 \--hidden-dropout 0.0 \--position-embedding-type rope \--normalization RMSNorm \--swiglu \--no-masked-softmax-fusion \--attention-softmax-in-fp32 \--min-lr 1.25e-7 \--weight-decay 1e-1 \--lr-warmup-fraction 0.01 \--clip-grad 1.0 \--adam-beta1 0.9 \--initial-loss-scale 65536 \--adam-beta2 0.95 \--finetune \--is-instruction-dataset \--tokenizer-type PretrainedFromHF \--tokenizer-name-or-path ${TOKENIZER_PATH} \--tokenizer-not-use-fast \--no-gradient-accumulation-fusion \--no-load-optim \--no-load-rng \--optimizer sgd \--fp16
"DATA_ARGS="--data-path $DATA_PATH \--split 949,50,1
"OUTPUT_ARGS="--log-interval 1 \--save-interval 15 \--eval-interval 15 \--exit-interval 15--eval-iters 10 \
"CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun $DISTRIBUTED_ARGS pretrain_gpt.py \$GPT_ARGS \$DATA_ARGS \$OUTPUT_ARGS \--distributed-backend nccl \--load $CKPT_PATH \--save $CKPT_SAVE_DIR 

输出

training ...
(min, max) time across ranks (ms):model-and-optimizer-setup ......................: (85970.98, 86006.16)train/valid/test-data-iterators-setup ..........: (606.22, 698.84)
[before the start of training step] datetime: 2024-05-31 06:51:44iteration        1/    5000 | consumed samples:           32 | elapsed time per iteration (ms): 41487.9 | learning rate: 0.000E+00 | global batch size:    32 | loss scale: 65536.0 | number of skipped iterations:   1 | number of nan iterations:   0 |iteration        2/    5000 | consumed samples:           64 | elapsed time per iteration (ms): 38955.8 | learning rate: 0.000E+00 | global batch size:    32 | loss scale: 32768.0 | number of skipped iterations:   1 | number of nan iterations:   0 |iteration        3/    5000 | consumed samples:           96 | elapsed time per iteration (ms): 39195.7 | learning rate: 2.500E-08 | global batch size:    32 | lm loss: 1.242152E+00 | loss scale: 32768.0 | grad norm: 12.467 | number of skipped iterations:   0 | number of nan iterations:   0 |
[Rank 6] (after 3 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.3095703125 | reserved: 17674.0 | max reserved: 17674.0
[Rank 2] (after 3 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.3095703125 | reserved: 17674.0 | max reserved: 17674.0
[Rank 0] (after 3 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.3095703125 | reserved: 17678.0 | max reserved: 17678.0[Rank 1] (after 3 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.3095703125 | reserved: 17666.0 | max reserved: 17666.0[Rank 7] (after 3 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.3095703125 | reserved: 17666.0 | max reserved: 17666.0
[Rank 4] (after 3 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.3095703125 | reserved: 17682.0 | max reserved: 17682.0
[Rank 3] (after 3 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.3095703125 | reserved: 17674.0 | max reserved: 17674.0[Rank 5] (after 3 iterations) memory (MB) | allocated: 13042.31005859375 | max allocated: 16302.3095703125 | reserved: 17666.0 | max reserved: 17666.0iteration        4/    5000 | consumed samples:          128 | elapsed time per iteration (ms): 39234.5 | learning rate: 2.500E-08 | global batch size:    32 | loss scale: 16384.0 | number of skipped iterations:   1 | number of nan iterations:   0 |iteration        5/    5000 | consumed samples:          160 | elapsed time per iteration (ms): 38909.1 | learning rate: 5.000E-08 | global batch size:    32 | lm loss: 1.327399E+00 | loss scale: 16384.0 | grad norm: 16.184 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        6/    5000 | consumed samples:          192 | elapsed time per iteration (ms): 38792.2 | learning rate: 7.500E-08 | global batch size:    32 | lm loss: 1.326726E+00 | loss scale: 16384.0 | grad norm: 12.158 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        7/    5000 | consumed samples:          224 | elapsed time per iteration (ms): 39337.1 | learning rate: 1.000E-07 | global batch size:    32 | lm loss: 1.260413E+00 | loss scale: 16384.0 | grad norm: 15.909 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        8/    5000 | consumed samples:          256 | elapsed time per iteration (ms): 38932.4 | learning rate: 1.250E-07 | global batch size:    32 | lm loss: 1.284461E+00 | loss scale: 16384.0 | grad norm: 18.599 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration        9/    5000 | consumed samples:          288 | elapsed time per iteration (ms): 38752.6 | learning rate: 1.500E-07 | global batch size:    32 | lm loss: 1.455263E+00 | loss scale: 16384.0 | grad norm: 13.974 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       10/    5000 | consumed samples:          320 | elapsed time per iteration (ms): 39324.6 | learning rate: 1.750E-07 | global batch size:    32 | lm loss: 1.400642E+00 | loss scale: 16384.0 | grad norm: 14.888 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       11/    5000 | consumed samples:          352 | elapsed time per iteration (ms): 38945.9 | learning rate: 2.000E-07 | global batch size:    32 | lm loss: 1.290374E+00 | loss scale: 16384.0 | grad norm: 20.459 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       12/    5000 | consumed samples:          384 | elapsed time per iteration (ms): 38755.6 | learning rate: 2.250E-07 | global batch size:    32 | lm loss: 1.346803E+00 | loss scale: 16384.0 | grad norm: 14.086 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       13/    5000 | consumed samples:          416 | elapsed time per iteration (ms): 39292.3 | learning rate: 2.500E-07 | global batch size:    32 | lm loss: 1.247773E+00 | loss scale: 16384.0 | grad norm: 17.651 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       14/    5000 | consumed samples:          448 | elapsed time per iteration (ms): 38935.8 | learning rate: 2.750E-07 | global batch size:    32 | lm loss: 1.277381E+00 | loss scale: 16384.0 | grad norm: 21.269 | number of skipped iterations:   0 | number of nan iterations:   0 |iteration       15/    5000 | consumed samples:          480 | elapsed time per iteration (ms): 38725.8 | learning rate: 3.000E-07 | global batch size:    32 | lm loss: 1.202904E+00 | loss scale: 16384.0 | grad norm: 16.246 | number of skipped iterations:   0 | number of nan iterations:   0 |
(min, max) time across ranks (ms):evaluate .......................................: (161834.87, 161840.18)
----------------------------------------------------------------------------------------------validation loss at iteration 15 | lm loss value: 1.186715E+00 | lm loss PPL: 3.276301E+00 |
----------------------------------------------------------------------------------------------
saving checkpoint at iteration      15 to ./ckpt/llama-2-7b-hf-finetune/successfully saved checkpoint at iteration      15 to ./ckpt/llama-2-7b-hf-finetune/
(min, max) time across ranks (ms):save-checkpoint ................................: (92042.34, 92042.48)
[exiting program at iteration 15] datetime: 2024-05-31 07:05:45

11.3 采用ModelLink进行指令微调模型的推理测试

cd /home/ModelLink/ModelLink
export CUDA_DEVICE_MAX_CONNECTIONS=1
CHECKPOINT="./ckpt/llama-2-7b-hf-finetune"
TOKENIZER_MODEL="../llama-2-7b-hf/tokenizer.model"  #词表路径
DATA_PATH="../finetune_dataset/llama-2-7b-hf/alpaca"
TOKENIZER_PATH="../llama-2-7b-hf/"MASTER_ADDR=localhost
MASTER_PORT=6001
NNODES=1
NODE_RANK=0
NPUS_PER_NODE=8
WORLD_SIZE=$(($NPUS_PER_NODE*$NNODES))DISTRIBUTED_ARGS="--nproc_per_node $NPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"python -m torch.distributed.launch $DISTRIBUTED_ARGS inference.py \--tensor-model-parallel-size 8  \--pipeline-model-parallel-size 1  \--num-layers 32 \--hidden-size 4096  \--ffn-hidden-size 11008 \--position-embedding-type rope \--seq-length 1024 \--max-new-tokens 256 \--micro-batch-size 1 \--global-batch-size 32 \--num-attention-heads 32  \--max-position-embeddings 1024 \--swiglu \--load "${CHECKPOINT}"  \--tokenizer-type PretrainedFromHF  \--tokenizer-name-or-path "${TOKENIZER_PATH}" \--tokenizer-model "${TOKENIZER_MODEL}"  \--tokenizer-not-use-fast \--fp16 \--normalization RMSNorm \--untie-embeddings-and-output-weights \--disable-bias-linear \--attention-softmax-in-fp32 \--no-load-optim \--no-load-rng \--no-masked-softmax-fusion \--no-gradient-accumulation-fusion \--exit-on-missing-checkpoint \--make-vocab-size-divisible-by 1

输出:

+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 530.30.02              Driver Version: 530.30.02    CUDA Version: 12.1     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                  Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf            Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 3090         On | 00000000:01:00.0 Off |                  N/A |
| 32%   56C    P2              182W / 350W|   4302MiB / 24576MiB |     99%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce RTX 3090         On | 00000000:25:00.0 Off |                  N/A |
| 32%   56C    P2              190W / 350W|   4292MiB / 24576MiB |     99%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   2  NVIDIA GeForce RTX 3090         On | 00000000:41:00.0 Off |                  N/A |
| 52%   58C    P2              191W / 350W|   4302MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   3  NVIDIA GeForce RTX 3090         On | 00000000:61:00.0 Off |                  N/A |
| 45%   53C    P2              181W / 350W|   4302MiB / 24576MiB |     99%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   4  NVIDIA GeForce RTX 3090         On | 00000000:81:00.0 Off |                  N/A |
| 45%   57C    P2              175W / 350W|   4292MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   5  NVIDIA GeForce RTX 3090         On | 00000000:A1:00.0 Off |                  N/A |
| 32%   55C    P2              176W / 350W|   4302MiB / 24576MiB |    100%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   6  NVIDIA GeForce RTX 3090         On | 00000000:C1:00.0 Off |                  N/A |
| 45%   54C    P2              185W / 350W|   4292MiB / 24576MiB |     99%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   7  NVIDIA GeForce RTX 3090         On | 00000000:E1:00.0 Off |                  N/A |
| 43%   52C    P2              179W / 350W|   4302MiB / 24576MiB |     99%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
INFO:root:
=============== Greedy Search ================
INFO:root:
You:
how are you?ModelLink:
I hope you are doing well. I am doing well. I am in the middle of a very busy week. I have a lot of things to do. I have to go to the store, I have to go to the bank, I have to go to the doctor, I have to go to the dentist, I have to go to the post office, I have to go to the library, I have to go to the gym, I have to go to the park, I have to go to the movies, I have to go to the mall, I have to go to the grocery store, I have to go to the gas station, I have to go to the car wash, I have to go to the car dealership, I have to go to the car repair shop, I have to go to the car rental place, I have to go to the car wash, I have to go to the car dealership, I have to go to the car repair shop, I have to go to the car rental place, I have to go to the car wash, I have to go to the car dealership, I have to go to the car repair shop, I have to go to the car
INFO:root:==============================================
INFO:root:
Elapsed: 36.62s
INFO:root:
================ Do Sample =================
INFO:root:
You:
how are you?ModelLink:
['I’m a little in my thirties and I work as a teacher everybodynik. for an ag company in C.... in the... UK. ItN IC and I havem a niceN.MS-mN.N,E,NMSN-B MSNM,NMSNMSMSMS MSMS-MS MS MS.MSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMS', 'How ares the weather nobody thanksgiving went? Are was it good for?om was,..…\n\n thought I would write the best thing about this game,. The best thing about this game is when it comes hard, the game can be easy. with the right equipmenties.\nit iss a tip shot of the game: You’\ncan change the wall to your lik..\nHere. P .\n:..IC: http.\nI.ICECHow\n:\nMS:LMS.\nMS:MSMS.\nMS\n\nMS thinkR\nMMSMS.\n.\nMS:MS...\nS’:MMS.MS\nMSMSMSMS\nMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMSMS']
INFO:root:============================================
INFO:root:
Elapsed: 77.06s
INFO:root:
=============== Beam Search =================
INFO:root:
You:
how are you?ModelLink:
I hope you are doing well. I am doing well.
I have been thinking about you a lot lately. I miss you and I want to see you again. I want to hold you in my arms and kiss you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you. I want to be with you
INFO:root:=============================================
INFO:root:
Elapsed: 76.65s
INFO:root:
======== Beam Search with sampling ==========
INFO:root:
You:
how are you?ModelLink:
I'm sierp nobody: I'm a girl!
Ich bin 18 Jahre alt. Hinweis: I'm 18 years old.
Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis: I'm 18 years old. Ich bin 18 Jahre alt. Hinweis:
INFO:root:=============================================
INFO:root:
Elapsed: 76.63s
INFO:root:
===========================================
INFO:root:Probability Distribution:
tensor([[4.0281e-11, 6.5011e-10, 3.4718e-04,  ..., 9.7066e-07, 1.2008e-07,2.8805e-07],[5.8844e-06, 7.9362e-04, 6.7673e-05,  ..., 1.1114e-04, 2.2738e-04,1.4215e-04],[4.0714e-09, 7.5630e-08, 1.4504e-02,  ..., 9.7873e-08, 1.1134e-07,1.9238e-07],...,[1.0839e-11, 4.2041e-11, 1.5068e-06,  ..., 1.3649e-11, 1.9026e-11,2.0660e-11],[4.5711e-12, 7.6339e-11, 2.2782e-06,  ..., 1.3781e-11, 7.7152e-12,1.0912e-11],[8.3764e-11, 3.1335e-10, 6.8695e-05,  ..., 1.7646e-10, 1.7127e-09,2.6986e-10]], device='cuda:0')
INFO:root:Beam Search Score:
tensor([0.9320, 0.7111], device='cuda:0')
INFO:root:===========================================
INFO:root:
Elapsed: 111.55s
INFO:root:===========================================================
INFO:root:1. If you want to quit, please entry one of [q, quit, exit]
INFO:root:2. To create new title, please entry one of [clear, new]
INFO:root:===========================================================

11.4.1 准备MMLU精度测试数据集

cd /home/ModelLink/ModelLink
mkdir -p ../mmlu/
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar -O ../mmlu/data.tar
tar -xf ../mmlu/data.tar -C ../mmlu

11.4.2 采用ModelLink进行指令微调模型的MMLU精度测试

cd /home/ModelLink/ModelLink
export CUDA_DEVICE_MAX_CONNECTIONS=1TOKENIZER_PATH="../llama-2-7b-hf/"
CHECKPOINT="./ckpt/llama-2-7b-hf-finetune"
DATA_PATH="../mmlu/data/test/"
TASK="mmlu"MASTER_ADDR=localhost
MASTER_PORT=6001
NNODES=1
NODE_RANK=0
NPUS_PER_NODE=8
DISTRIBUTED_ARGS="--nproc_per_node $NPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"python -m torch.distributed.launch $DISTRIBUTED_ARGS evaluation.py   \--task-data-path $DATA_PATH \--task $TASK\--seq-length 1024 \--max-new-tokens 1 \--evaluation-batch-size 1 \--max-position-embeddings 1024 \--tensor-model-parallel-size 8  \--pipeline-model-parallel-size 1  \--num-layers 32  \--hidden-size 4096  \--ffn-hidden-size 11008 \--num-attention-heads 32  \--swiglu \--disable-bias-linear \--load ${CHECKPOINT}  \--normalization RMSNorm \--tokenizer-type PretrainedFromHF  \--tokenizer-name-or-path ${TOKENIZER_PATH} \--tokenizer-not-use-fast \--fp16  \--micro-batch-size 1  \--position-embedding-type rope \--exit-on-missing-checkpoint \--no-load-rng \--no-load-optim \--untie-embeddings-and-output-weights \--no-masked-softmax-fusion \--make-vocab-size-divisible-by 1 \--seed 42

输出:

INFO:modellink.tasks.evaluation.eval_impl.mmlu_eval:mmlu acc = 6430/14042=0.4579119783506623
INFO:__main__:subject  question_n       acc
0                              virology         166  0.421687
1                     college_chemistry         100  0.310000
2                     computer_security         100  0.600000
3                elementary_mathematics         378  0.269841
4                 high_school_geography         198  0.479798
5                            management         103  0.514563
6                   high_school_biology         310  0.512903
7                           human_aging         223  0.560538
8                high_school_statistics         216  0.259259
9                      professional_law        1534  0.370274
10              high_school_mathematics         270  0.285185
11                   conceptual_physics         235  0.438298
12                        jurisprudence         108  0.537037
13                     medical_genetics         100  0.520000
14                     college_medicine         173  0.416185
15                   clinical_knowledge         265  0.452830
16             college_computer_science         100  0.360000
17           high_school_microeconomics         238  0.424370
18                high_school_chemistry         203  0.359606
19              professional_psychology         612  0.449346
20                            astronomy         152  0.434211
21         high_school_computer_science         100  0.390000
22            high_school_world_history         237  0.654008
23                     abstract_algebra         100  0.300000
24                         formal_logic         126  0.293651
25                     public_relations         110  0.536364
26                professional_medicine         272  0.522059
27                           philosophy         311  0.591640
28               high_school_psychology         545  0.603670
29                              anatomy         135  0.481481
30                      college_biology         144  0.451389
31                  college_mathematics         100  0.310000
32                      human_sexuality         131  0.541985
33                         econometrics         114  0.289474
34                    us_foreign_policy         100  0.660000
35               high_school_us_history         204  0.519608
36                      moral_scenarios         895  0.253631
37                            sociology         201  0.621891
38                       moral_disputes         346  0.523121
39                    logical_fallacies         163  0.490798
40         high_school_european_history         165  0.600000
41                      business_ethics         100  0.500000
42           high_school_macroeconomics         390  0.448718
43                        miscellaneous         783  0.630907
44                  high_school_physics         151  0.337748
45              professional_accounting         282  0.358156
46                            nutrition         306  0.496732
47                     machine_learning         112  0.375000
48                         global_facts         100  0.330000
49                           prehistory         324  0.481481
50                     security_studies         245  0.538776
51               electrical_engineering         145  0.496552
52                      world_religions         171  0.684211
53                            marketing         234  0.670940
54                      college_physics         102  0.215686
55  high_school_government_and_politics         193  0.652850
56                    international_law         121  0.611570
57                                total       14042  0.457912
total: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 57/57 [1:27:12<00:00, 91.80s/it]
INFO:__main__:MMLU Running Time:, 5232.327924013138

11.5 将模型从Megatron格式转回HuggingFace格式

–save-dir需要填入原始HF模型路径,新权重会存到该路径的子目录mg2hg下

cd /home/ModelLink/ModelLink
python tools/checkpoint/convert_ckpt.py \--model-type GPT \--loader megatron \--saver megatron \--save-model-type save_huggingface_llama \--load-dir ./ckpt/llama-2-7b-hf-finetune/ \--target-tensor-parallel-size 1 \--target-pipeline-parallel-size 1 \--save-dir ../llama-2-7b-hf/#拷贝到独立的目录(别忘了从原始模型里复制词表相关的文件)
cd /home/ModelLink
mv ./llama-2-7b-hf/mg2hg ./llama-2-7b-hf-mg2hg
cp -vf llama-2-7b-hf/tokenizer* llama-2-7b-hf-mg2hg/

12 指令微调后HuggingFace格式模型的推理测试

cd /home/ModelLink/
python3 torch_infer.py ./llama-2-7b-hf-mg2hg	

输出:

---------------------------------------- Response -------------------------------------
Give three tips for staying healthy during the holidays.
The holidays are a time of celebration and joy, but they can also be a time of stress and overindulgence. Here are three tips for staying healthy during the holidays:
1. Eat healthy foods.
2. Exercise regularly.
3. Get enough sleep.
What are some of the most common health problems during the holidays?
The holidays are a time of celebration and joy, but they can also be a time of stress and overindulgence
---------------------------------------------------------------------------------------
Time taken for first token: 0.0249 seconds
Total time taken: 2.9708 seconds
Number of tokens generated: 119
Tokens per second: 40.06
BEFORE MA: 12884.52 MMA: 12884.52 CA: 12886.00 MCA: 12886.00
AFTER  MA: 12892.65 MMA: 13019.47 CA: 13036.00 MCA: 13036.00
DIFF   MA: 8.12 MMA: 134.94 CA: 150.00 MCA: 150.00

13 TensorRT-LLM推理测试

cd /home/ModelLink#安装tensorrt_llm
pip3 install tensorrt_llm -U --pre --extra-index-url https://pypi.nvidia.com#下载TensorRT-LLM(需要里面的llama sample)
git clone https://github.com/NVIDIA/TensorRT-LLM.git
cd /home/ModelLink/TensorRT-LLM/examples/llama#将HuggingFace格式的模型转换到TensorRT-LLM格式
python convert_checkpoint.py --model_dir /home/ModelLink/llama-2-7b-hf-mg2hg/ \--output_dir ./tllm_checkpoint_1gpu_fp16 \--dtype float16#模型编译
trtllm-build --checkpoint_dir ./tllm_checkpoint_1gpu_fp16 \--output_dir ./tllm_1gpu_fp16_engine \--gemm_plugin auto#运行推理DEMO
python ../run.py --max_output_len=256 \--tokenizer_dir /home/ModelLink/llama-2-7b-hf-mg2hg/ \--engine_dir=./tllm_1gpu_fp16_engine \--input_text "Give three tips for staying healthy"#推理性能测试
python ../../benchmarks/python/benchmark.py \-m llama_7b \--mode plugin \--batch_size "1" \--engine_dir ./tllm_1gpu_fp16_engine \--input_output_len "512,512"			

输出

#DEMO输出
Input [Text 0]: "<s> Give three tips for staying healthy"
Output [Text 0 Beam 0]: "during the holidays.
The holidays are a time of celebration and joy, but they can also be a time of stress and overindulgence. Here are three tips for staying healthy during the holidays:
1. Eat healthy foods.
2. Exercise regularly.
3. Get enough sleep.
What are some tips for staying healthy during the holidays?
The holidays are a time of celebration and joy, but they can also be a time of stress and overindulgence. Here are some tips for staying healthy during the holidays:
1. Eat healthy foods. The holidays are a time to indulge, but it’s important to remember to eat healthy foods as well. Focus on eating fruits and vegetables, lean proteins, and whole grains.
2. Exercise regularly. Exercise is important year-round, but it’s especially important during the holidays. Exercise helps to reduce stress, improve mood, and boost energy levels.
3. Get enough sleep. Sleep is important for overall health and well-be"#性能测试输出
[TensorRT-LLM] TensorRT-LLM version: 0.11.0.dev2024052800
[BENCHMARK] model_name llama_7b world_size 1 num_heads 32 num_kv_heads 32 num_layers 32 hidden_size 4096 vocab_size 32000 precision float16 batch_size 1 gpu_weights_percent 1.0 input_length 512 output_length 512 
gpu_peak_mem(gb) 14.321 build_time(s) 0 tokens_per_sec 51.9 percentile95(ms) 9878.526 percentile99(ms) 9878.526 latency(ms) 9864.582 compute_cap sm86 quantization QuantMode.0 generation_time(ms) 9742.378 total_generated_tokens 511.0 generation_tokens_per_second 52.451#SMI信息
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 3090         On | 00000000:01:00.0 Off |                  N/A |
| 89%   68C    P2              341W / 350W|  14664MiB / 24576MiB |     99%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+

14 异常处理–提示tensorrt找不到

wget https://developer.download.nvidia.cn/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
tar -xf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
cd TensorRT-10.0.1.6
\cp bin include lib targets /usr/local/cuda -ravf
cd python/
pip uninstall tensorrt -y
pip install tensorrt-10.0.1-cp310-none-linux_x86_64.whl tensorrt_dispatch-10.0.1-cp310-none-linux_x86_64.whl tensorrt_lean-10.0.1-cp310-none-linux_x86_64.whl

这篇关于修改ModelLink在RTX3090完成预训练、微调、推理、评估以及TRT-LLM转换、推理、性能测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019898

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

Oracle修改端口号之后无法启动的解决方案

《Oracle修改端口号之后无法启动的解决方案》Oracle数据库更改端口后出现监听器无法启动的问题确实较为常见,但并非必然发生,这一问题通常源于​​配置错误或环境冲突​​,而非端口修改本身,以下是系... 目录一、问题根源分析​​​二、保姆级解决方案​​​​步骤1:修正监听器配置文件 (listener.

Linux中修改Apache HTTP Server(httpd)默认端口的完整指南

《Linux中修改ApacheHTTPServer(httpd)默认端口的完整指南》ApacheHTTPServer(简称httpd)是Linux系统中最常用的Web服务器之一,本文将详细介绍如何... 目录一、修改 httpd 默认端口的步骤1. 查找 httpd 配置文件路径2. 编辑配置文件3. 保存

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、