5.25.1 用于组织病理学图像分类的深度注意力特征学习

本文主要是介绍5.25.1 用于组织病理学图像分类的深度注意力特征学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提出了一种基于深度学习的组织病理学图像分类新方法。我们的方法建立在标准卷积神经网络 (CNN) 的基础上,并结合了两个独立的注意力模块,以实现更有效的特征学习。

具体而言,注意力模块沿不同维度推断注意力图,这有助于将 CNN 聚焦于关键图像区域,并突出显示判别性特征通道,同时抑制与分类任务无关的信息。注意力模块是轻量级的,并且以较小的额外计算开销增强了特征表示。

1. 介绍

使用组织活检的显微镜组织病理学检查已广泛应用于癌症诊断,并在实践中被视为确诊金标准。诊断报告(包括分级和分期)通常由经验丰富的病理学家通过目视检查组织学样本完成。随着图像处理技术的最新进展,这种组织病理学分析的自动化变得越来越可能,从而帮助病理学家提高工作效率和客观性。作为一项基本任务,组织病理学图像的分类近年来备受关注。然而,由于组织病理学图像固有的复杂视觉模式,这种分类任务相当具有挑战性。

早期的组织病理学图像分类研究主要依赖于从整个图像或分割块中提取的手工特征 。虽然手工特征具有可解释性,但由于对图像的描述有限,因此通常无法满足此任务的要求。 

利用卷积神经网络 (CNN) 进行自动图像特征学习,结果表明该方法比手工设计的性能更好。然而,基于 CNN 的模型的一个主要弱点是它们通常需要大量数据进行训练。为了缓解数据密集型问题,一种常见的策略是对在大型图像数据集(例如 ImageNet)上预训练的模型进行微调。另一类不同的方法只是利用预训练的 CNN 作为特征提取器,然后应用 Fisher 向量 (FV) 编码进行全局特征表示。这些方法在取得最佳效果的同时,往往会产生冗余和噪声的特征,不利于分类。

1.1 主要贡献

提出了一种新的 CNN 架构,并从不同的角度改进了组织病理学图像(斑块)分类的特征表示。我们方法的核心是注意力机制,它可以帮助 CNN 专注于对分类任务至关重要的区域和特征通道。

主要动机来自人类的视觉系统:当感知场景时,人类首先会瞥一眼该场景,然后立即关注显著内容,而忽略不相关的信息。通过全局特征相关性分析实现了注意力图等机制。具体而言,受 Transformer 和非局部神经网络 [11] 的启发,我们设计了两个注意力模块,分别沿通道和空间维度推断注意力图

通道注意力(C-Attn)模块允许网络专注于判别特征通道并减少冗余,而空间注意力(S-Attn)模块突出显示有用区域并抑制与网络无关的区域。这两个模块协同增强了判别学习能力,并且可以即插即用的方式集成到任意现有的 CNN 架构中。

在实践中,我们采用 VGG19 [12] 作为基础模型,并在不同位置插入注意模块,如图所示。我们将我们的方法应用于良性和恶性乳腺癌分类任务,并在公开的 BreakHis 数据集 [2] 上证明了我们的方法与最先进的方法相比的优越性。

2. 方法

给定一个中间特征图 \mathbf{F}\in\mathbb{R}^{C\times H\times W} 作为输入(C、H 和 W 分别是 F 的通道数、高度和宽度),C-Attn 和 S-Attn 模块分别沿通道和空间维度推断注意力图 A_c

这篇关于5.25.1 用于组织病理学图像分类的深度注意力特征学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019176

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示