OpenCV学习 基础图像操作 (十五):频域变换及相关操作

2024-05-31 20:52

本文主要是介绍OpenCV学习 基础图像操作 (十五):频域变换及相关操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础原理

图像的频域处理提供了一种强大的工具,用于分析和处理图像的频率成分。傅里叶变换、小波变换和Gabor变换等技术各有优劣,适用于不同的应用场景。通过选择合适的频域算法,可以实现图像的压缩、去噪、特征提取和增强等多种应用。本篇主要针对常见的傅里叶变换和小波变换来进行介绍.

DFT 离散傅里叶变换

离散傅里叶变换(英语:Discrete Fourier Transform,缩写为DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。

在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。在实际应用中通常采用快速傅里叶变换计算DFT。

对于N点序列{x[n]}_{0\leq n < N},它的离散傅里叶变换(DFT)为

\widehat{x}[k]=\sum_{n=0}^{N-1}e^{-i\frac{2\pi }{N}nk}x[n] \ \ \ k = 0,1, ...,N-1

其中e是自然对数的底数,i是虚数单位。通常以符号\mathfrak{F}表示这一变换,即

\widehat{x}=\mathfrak{F}x

离散傅里叶变换的逆变换(IDFT)为:

x[k]=\sum_{k=0}^{N-1}e^{i\frac{2\pi }{N}nk}\widehat{x}[n] \ \ \ n = 0,1, ...,N-1

可以记为:

x=\mathfrak{F}^{-1}\widehat{x}

实际上,DFT和IDFT变换式中和式前面的归一化系数并不重要。在上面的定义中,DFT和IDFT前的系数分别为1和\frac{1}{N}。有时会将这两个系数都改成\frac{1}{\sqrt{N}}

从公式来看,离散傅立叶变换是将图像拆分到不同频率的信号上观察,但是只能观察到整幅图像整体在频域的分布,完全丢弃了时域上的信息,则可能比较不直观.

WT 小波变换

小波变换使用一系列的不同尺度的小波去分解原函数,变换后得到的是原函数在不同尺度小波下的系数。不同的小波通过平移与尺度变换分解,平移是为了得到原函数的时间特性,尺度变换是为了得到原函数的频率特性。

小波变换步骤:

  1. 把小波w(t)和原函数f(t)的开始部分进行比较,计算系数C。系数C表示该部分函数与小波的相似程度。
  2. 把小波向右移k单位,得到小波w(t-k),重复1。重复该步骤直至函数f结束.
  3. 扩展小波w(t),得到小波w(t/2),重复步骤1,2.
  4. 不断扩展小波,重复1,2,3.

相比离散傅立叶变换,小波变换是用一个局部的频域响应子来与图像进行卷积,最后得到是在不同局部位置上的对不同频率的响应强度.

API介绍

DFT

将一张图转换到频域内,再分别通过低通滤波和高通滤波,观察到低通滤波后,图像保存了更多的整体轮廓,而高通滤波后,图像保存了更多的边界处的细节.其中靠近图像中央的是低频区,远离中央的是高频区,亮度代表的是幅度,方向代表的是相位.

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为灰度图像
img = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)# 获取图像的行列数
rows, cols = img.shape
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
right = ncols - cols
bottom = nrows - rows
padded = cv2.copyMakeBorder(img, 0, bottom, 0, right, cv2.BORDER_CONSTANT, value=0)# 执行傅里叶变换
dft = cv2.dft(np.float32(padded), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 计算幅值谱
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))# 创建掩膜,高频保留,低频设置为0
rows, cols = dft_shift.shape[:2]
crow, ccol = rows // 2 , cols // 2
mask = np.ones((rows, cols, 2), np.uint8)
r = 30  # 设置高通滤波器半径
center = [crow, ccol]
x, y = np.ogrid[:rows, :cols]
mask_area = (x - center[0])**2 + (y - center[1])**2 <= r*r
mask[mask_area] = 0# 应用掩膜并进行逆DFT
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back_H = cv2.idft(f_ishift)
img_back_H = cv2.magnitude(img_back_H[:, :, 0], img_back_H[:, :, 1])# 创建掩膜,低频保留,高频设置为0
mask = np.zeros((rows, cols, 2), np.uint8)
mask[mask_area] = 1# 应用掩膜并进行逆DFT
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back_L = cv2.idft(f_ishift)
img_back_L = cv2.magnitude(img_back_L[:, :, 0], img_back_L[:, :, 1])# 显示滤波后的图像
plt.subplot(221), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(img_back_L, cmap='gray')
plt.title('Low Pass Filtered Image'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_back_H, cmap='gray')
plt.title('High Pass Filtered Image'), plt.xticks([]), plt.yticks([])
plt.show()

WT

分解过程可描述为:首先对图像的每一行进行 1D-DWT,获得原始图像在水平方向上的低频分量 L 和高频分量 H,然后对变换所得数据的每一列进行 1D-DWT,获得原始图像在水平和垂直方向上的低频分量 LL、水平方向上的低频和垂直方向上的高频 LH、水平方向上的高频和垂直方向上的低频 HL 以及水平和垂直方向上的的高频分量 HH。

import cv2
import pywt
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为灰度图像
img = cv2.imread('1.png', cv2.IMREAD_GRAYSCALE)# 选择小波函数
wavelet = 'haar'# 进行二维离散小波变换
coeffs2 = pywt.dwt2(img, wavelet)# 提取系数
LL, (LH, HL, HH) = coeffs2# 显示小波系数图像
plt.figure(figsize=(12, 12))
titles = ['Approximation', 'Horizontal detail', 'Vertical detail', 'Diagonal detail']images = [LL, LH, HL, HH]
for i, (title, image) in enumerate(zip(titles, images)):plt.subplot(2, 2, i + 1)plt.imshow(image, cmap='gray')plt.title(title)plt.axis('off')
plt.show()

参考链接

DFT原理

WT原理

【OpenCV学习笔记】之离散傅里叶变换(DFT)-CSDN博客

【一次讲透小波变换原理,全新角度切入,20分钟时长警告!】

这篇关于OpenCV学习 基础图像操作 (十五):频域变换及相关操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019020

相关文章

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio