OpenCV学习 基础图像操作 (十五):频域变换及相关操作

2024-05-31 20:52

本文主要是介绍OpenCV学习 基础图像操作 (十五):频域变换及相关操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础原理

图像的频域处理提供了一种强大的工具,用于分析和处理图像的频率成分。傅里叶变换、小波变换和Gabor变换等技术各有优劣,适用于不同的应用场景。通过选择合适的频域算法,可以实现图像的压缩、去噪、特征提取和增强等多种应用。本篇主要针对常见的傅里叶变换和小波变换来进行介绍.

DFT 离散傅里叶变换

离散傅里叶变换(英语:Discrete Fourier Transform,缩写为DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。

在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。在实际应用中通常采用快速傅里叶变换计算DFT。

对于N点序列{x[n]}_{0\leq n < N},它的离散傅里叶变换(DFT)为

\widehat{x}[k]=\sum_{n=0}^{N-1}e^{-i\frac{2\pi }{N}nk}x[n] \ \ \ k = 0,1, ...,N-1

其中e是自然对数的底数,i是虚数单位。通常以符号\mathfrak{F}表示这一变换,即

\widehat{x}=\mathfrak{F}x

离散傅里叶变换的逆变换(IDFT)为:

x[k]=\sum_{k=0}^{N-1}e^{i\frac{2\pi }{N}nk}\widehat{x}[n] \ \ \ n = 0,1, ...,N-1

可以记为:

x=\mathfrak{F}^{-1}\widehat{x}

实际上,DFT和IDFT变换式中和式前面的归一化系数并不重要。在上面的定义中,DFT和IDFT前的系数分别为1和\frac{1}{N}。有时会将这两个系数都改成\frac{1}{\sqrt{N}}

从公式来看,离散傅立叶变换是将图像拆分到不同频率的信号上观察,但是只能观察到整幅图像整体在频域的分布,完全丢弃了时域上的信息,则可能比较不直观.

WT 小波变换

小波变换使用一系列的不同尺度的小波去分解原函数,变换后得到的是原函数在不同尺度小波下的系数。不同的小波通过平移与尺度变换分解,平移是为了得到原函数的时间特性,尺度变换是为了得到原函数的频率特性。

小波变换步骤:

  1. 把小波w(t)和原函数f(t)的开始部分进行比较,计算系数C。系数C表示该部分函数与小波的相似程度。
  2. 把小波向右移k单位,得到小波w(t-k),重复1。重复该步骤直至函数f结束.
  3. 扩展小波w(t),得到小波w(t/2),重复步骤1,2.
  4. 不断扩展小波,重复1,2,3.

相比离散傅立叶变换,小波变换是用一个局部的频域响应子来与图像进行卷积,最后得到是在不同局部位置上的对不同频率的响应强度.

API介绍

DFT

将一张图转换到频域内,再分别通过低通滤波和高通滤波,观察到低通滤波后,图像保存了更多的整体轮廓,而高通滤波后,图像保存了更多的边界处的细节.其中靠近图像中央的是低频区,远离中央的是高频区,亮度代表的是幅度,方向代表的是相位.

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为灰度图像
img = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)# 获取图像的行列数
rows, cols = img.shape
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
right = ncols - cols
bottom = nrows - rows
padded = cv2.copyMakeBorder(img, 0, bottom, 0, right, cv2.BORDER_CONSTANT, value=0)# 执行傅里叶变换
dft = cv2.dft(np.float32(padded), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 计算幅值谱
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))# 创建掩膜,高频保留,低频设置为0
rows, cols = dft_shift.shape[:2]
crow, ccol = rows // 2 , cols // 2
mask = np.ones((rows, cols, 2), np.uint8)
r = 30  # 设置高通滤波器半径
center = [crow, ccol]
x, y = np.ogrid[:rows, :cols]
mask_area = (x - center[0])**2 + (y - center[1])**2 <= r*r
mask[mask_area] = 0# 应用掩膜并进行逆DFT
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back_H = cv2.idft(f_ishift)
img_back_H = cv2.magnitude(img_back_H[:, :, 0], img_back_H[:, :, 1])# 创建掩膜,低频保留,高频设置为0
mask = np.zeros((rows, cols, 2), np.uint8)
mask[mask_area] = 1# 应用掩膜并进行逆DFT
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back_L = cv2.idft(f_ishift)
img_back_L = cv2.magnitude(img_back_L[:, :, 0], img_back_L[:, :, 1])# 显示滤波后的图像
plt.subplot(221), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(img_back_L, cmap='gray')
plt.title('Low Pass Filtered Image'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_back_H, cmap='gray')
plt.title('High Pass Filtered Image'), plt.xticks([]), plt.yticks([])
plt.show()

WT

分解过程可描述为:首先对图像的每一行进行 1D-DWT,获得原始图像在水平方向上的低频分量 L 和高频分量 H,然后对变换所得数据的每一列进行 1D-DWT,获得原始图像在水平和垂直方向上的低频分量 LL、水平方向上的低频和垂直方向上的高频 LH、水平方向上的高频和垂直方向上的低频 HL 以及水平和垂直方向上的的高频分量 HH。

import cv2
import pywt
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为灰度图像
img = cv2.imread('1.png', cv2.IMREAD_GRAYSCALE)# 选择小波函数
wavelet = 'haar'# 进行二维离散小波变换
coeffs2 = pywt.dwt2(img, wavelet)# 提取系数
LL, (LH, HL, HH) = coeffs2# 显示小波系数图像
plt.figure(figsize=(12, 12))
titles = ['Approximation', 'Horizontal detail', 'Vertical detail', 'Diagonal detail']images = [LL, LH, HL, HH]
for i, (title, image) in enumerate(zip(titles, images)):plt.subplot(2, 2, i + 1)plt.imshow(image, cmap='gray')plt.title(title)plt.axis('off')
plt.show()

参考链接

DFT原理

WT原理

【OpenCV学习笔记】之离散傅里叶变换(DFT)-CSDN博客

【一次讲透小波变换原理,全新角度切入,20分钟时长警告!】

这篇关于OpenCV学习 基础图像操作 (十五):频域变换及相关操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019020

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Java 字符串操作之contains 和 substring 方法最佳实践与常见问题

《Java字符串操作之contains和substring方法最佳实践与常见问题》本文给大家详细介绍Java字符串操作之contains和substring方法最佳实践与常见问题,本文结合实例... 目录一、contains 方法详解1. 方法定义与语法2. 底层实现原理3. 使用示例4. 注意事项二、su

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Java Stream流与使用操作指南

《JavaStream流与使用操作指南》Stream不是数据结构,而是一种高级的数据处理工具,允许你以声明式的方式处理数据集合,类似于SQL语句操作数据库,本文给大家介绍JavaStream流与使用... 目录一、什么是stream流二、创建stream流1.单列集合创建stream流2.双列集合创建str

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.