数据结构 | 二叉树(基本概念、性质、遍历、C代码实现)

2024-05-31 19:44

本文主要是介绍数据结构 | 二叉树(基本概念、性质、遍历、C代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.树的基本概念

树是一种 非线性 的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。
把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根结点没有前驱结点 除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm
其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此, 树是递归定义 的。
结点的度:一个结点含有的子树的个数称为该结点的度;
叶结点:度为0的结点称为叶结点;
分支结点:度不为0的结点; 
父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点;
子结点:一个结点含有的子树的根结点称为该结点的子结点;
兄弟结点:具有相同父结点的结点互称为兄弟结点;
树的度:一棵树中,最大的结点的度称为树的度; 
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
树的高度或深度:树中结点的最大层次; 

2.二叉树的基本概念

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根结点加上两棵别称为左子树和右子树的二叉树组成
注意:二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

2.1特殊的二叉树

满二叉树

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。

完全二叉树

特征:前n-1层都是满的,最后一层可以不满,但最后一层从左到右必须是连续的。
ps: 满二叉树是一种特殊的完全二叉树。

3.二叉树的性质

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点.
2. 若规定根结点的层数为1,则深度为h的二叉树的最大结点数是2^h-1
3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有 n0=n2 +1
4. 若规定根结点的层数为1,具有n个结点的满二叉树的深度h=log2(n+1)
5. 对于完全二叉树:
双亲序号:(i-1)/2  (i为子节点序号)
左孩子序号:2i+1  (i为双亲结点序号)
右孩子序号:2i+2 (i为双亲结点序号)
练习:一个具有767个结点的完全二叉树,其叶子结点个数为()
A 383
B 384
C 385
D 386
答案:B
详解:设有度为2节点n2个, 度为1节点n1个,度为0节点n0个,
767=n2+n1+n0
n2=n0-1
由上面两式可得:
767=n1+2n0-1
768=n1+2n0
由于2n0必为偶数,768为偶数,可得:n1为偶数
且完全二叉树中n1只能是1或0
因此n1=0
768=2n0
n0=384

4 .二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
1. 顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
2.链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是
链表中每个结点由三个域组成,数据域左右指针域,左右指针分别用来给出该结点左孩子和右孩子所
在的链结点的存储地址 。链式结构又分为二叉链和三叉链。本文主要针对二叉链。

5.二叉树的遍历

5.1 前序、中序以及后序遍历

1. 前序遍历——根节点 左子树 右子树
2. 中序遍历——左子树  根节点 右子树
3. 后序遍历——左子树 右子树  根节点

5.2 层序遍历

层序遍历:一层一层地往下遍历

6.二叉树代码实现

思路

前序/中序/后序遍历

递归思想:将当前的大问题拆解成小问题

以前序遍历为例:

当前问题——打印根,打印左子树,打印右子树

子问题——如图

递归返回条件——root==NULL

前序遍历代码

//前序遍历 根节点 左节点 右节点
void BinaryTreePrevOrder(BTNode* root) {if (root == NULL) {printf("N ");return;}printf("%d ", root->data);BinaryTreePrevOrder(root->left);BinaryTreePrevOrder(root->right);
}

中序遍历代码

void BinaryTreeInOrder(BTNode* root) {if (root == NULL) {printf("N ");return;}BinaryTreeInOrder(root->left);printf("%d ", root->data);BinaryTreeInOrder(root->right);
}

后序遍历代码

void BinaryTreePostOrder(BTNode* root) {if (root == NULL) {printf("N ");return;}BinaryTreePostOrder(root->left);BinaryTreePostOrder(root->right);printf("%d ", root->data);
}

节点个数/叶子节点个数/树高/第k层叶子数

1.节点个数

递归思想:

情况1:空,0个

情况2:不为空,左子树+右子树+1

2.叶子节点个数

情况1:空,返回0

情况2:只有一个结点,返回1

情况3:左子树+右子树

3.树的高度

情况1:空,返回0

情况2:左子树和右子树高度中大的值+1

4.第k层叶子数

情况1:空,返回0

情况2:非空,k==1,返回1

情况3:非空,k>1,左子树第k-1层+右子树第k-1层

int BinaryTreeSize(BTNode* root) {if (root == NULL) {return 0;}if (root->left == NULL && root->right == NULL) {return 1;}return BinaryTreeSize(root->left) + BinaryTreeSize(root->right)+1;}int BinaryTreeLeafSize(BTNode* root) {if (root == NULL) {return 0;}if (root->left == NULL && root->right == NULL) {return 1;}return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}int TreeHeight(BTNode* root)
{if (root == NULL)return 0;int leftHeight = TreeHeight(root->left);int rightHeight = TreeHeight(root->right);return leftHeight > rightHeight ?leftHeight + 1 : rightHeight + 1;
}int BinaryTreeLevelKSize(BTNode* root, int k) {if (root == NULL) {return 0;}if (k==1) {return 1;}return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

查找值为x的节点

递归思想

情况1:空,返回NULL

情况2:不为空,根值为x,返回根节点

情况3:不为空,根值不为x,查找左子树,有则返回

             左子树中无,查找右子树,有则返回

             右子树中也无,返回空

BTNode* BinaryTreeFind(BTNode* root, BTDataType x) {BTNode* ret = NULL;if (root == NULL) {return NULL;}if (root->data == x) {ret = root;return ret;}if (BinaryTreeFind(root->left, x) != NULL) {ret = BinaryTreeFind(root->left, x);}if (BinaryTreeFind(root->right, x) != NULL) {ret = BinaryTreeFind(root->right, x);}
}

层序遍历/完全二叉树

层序遍历

1.根进队列

2.节点出队列时,该节点的子节点(非空)进队列

3.当队列为空时,循环结束

完全二叉树

1.进行层序遍历,空也进队列

2.遇到第一个空节点,开始判断,后面全空就是完全二叉树,后面有非空就不是完全二叉树

void BinaryTreeLevelOrder(BTNode* root) {if (!root) {return;}Queue q;QueueInit(&q);QueuePush(&q, root);while (QueueSize(&q) > 0) {BTNode* head = QueueFront(&q);if (head->left) {QueuePush(&q, head->left);}if (head->right) {QueuePush(&q, head->right);}printf("%d", head->data);QueuePop(&q);}QueueDestroy(&q);
}bool BinaryTreeComplete(BTNode* root) {if (!root) {return;}Queue q;QueueInit(&q);QueuePush(&q, root);while (QueueSize(&q) > 0) {BTNode* head = QueueFront(&q);if (head == NULL) {break;}QueuePush(&q, head->left);QueuePush(&q, head->right);QueuePop(&q);}while(!QueueEmpty(&q)){BTNode* head = QueueFront(&q);if (head) {QueueDestroy(&q);return false;}QueuePop(&q);}QueueDestroy(&q);return true;
}

代码汇总

binarytree.h

#pragma once
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>
typedef int BTDataType;typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate();
// 二叉树销毁
void BinaryTreeDestory(BTNode* root);
// 二叉树节点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);
// 层序遍历
void BinaryTreeLevelOrder(BTNode* root);
// 判断二叉树是否是完全二叉树
bool BinaryTreeComplete(BTNode* root);

binarytree.c

#define _CRT_SECURE_NO_WARNINGS
#include "binarytree.h"
#include "queue.h"BTNode* BuyNode(BTDataType x) {BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));if (newnode == NULL) {perror("malloc fail!");}newnode->left = NULL;newnode->right = NULL;newnode->data = x;return newnode;
}BTNode* BinaryTreeCreate() {BTNode* Node1 = BuyNode(1);BTNode* Node2 = BuyNode(2);BTNode* Node3 = BuyNode(3);BTNode* Node4 = BuyNode(4);BTNode* Node5 = BuyNode(5);BTNode* Node6 = BuyNode(6);BTNode* Node7 = BuyNode(7);Node1->left = Node2;Node1->right = Node3;Node2->left = Node4;Node2->right = Node5;Node3->left = Node6;//Node6->left = Node7;return Node1;//返回根节点
}
//前序遍历 根节点 左节点 右节点
void BinaryTreePrevOrder(BTNode* root) {if (root == NULL) {printf("N ");return;}printf("%d ", root->data);BinaryTreePrevOrder(root->left);BinaryTreePrevOrder(root->right);
}void BinaryTreeInOrder(BTNode* root) {if (root == NULL) {printf("N ");return;}BinaryTreeInOrder(root->left);printf("%d ", root->data);BinaryTreeInOrder(root->right);
}void BinaryTreePostOrder(BTNode* root) {if (root == NULL) {printf("N ");return;}BinaryTreePostOrder(root->left);BinaryTreePostOrder(root->right);printf("%d ", root->data);
}int BinaryTreeSize(BTNode* root) {if (root == NULL) {return 0;}if (root->left == NULL && root->right == NULL) {return 1;}return BinaryTreeSize(root->left) + BinaryTreeSize(root->right)+1;}int BinaryTreeLeafSize(BTNode* root) {if (root == NULL) {return 0;}if (root->left == NULL && root->right == NULL) {return 1;}return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}int BinaryTreeLevelKSize(BTNode* root, int k) {if (root == NULL) {return 0;}if (k==1) {return 1;}return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}int TreeHeight(BTNode* root)
{if (root == NULL)return 0;int leftHeight = TreeHeight(root->left);int rightHeight = TreeHeight(root->right);return leftHeight > rightHeight ?leftHeight + 1 : rightHeight + 1;
}BTNode* BinaryTreeFind(BTNode* root, BTDataType x) {BTNode* ret = NULL;if (root == NULL) {return NULL;}if (root->data == x) {ret = root;return ret;}if (BinaryTreeFind(root->left, x) != NULL) {ret = BinaryTreeFind(root->left, x);}if (BinaryTreeFind(root->right, x) != NULL) {ret = BinaryTreeFind(root->right, x);}
}void BinaryTreeLevelOrder(BTNode* root) {if (!root) {return;}Queue q;QueueInit(&q);QueuePush(&q, root);while (QueueSize(&q) > 0) {BTNode* head = QueueFront(&q);if (head->left) {QueuePush(&q, head->left);}if (head->right) {QueuePush(&q, head->right);}printf("%d", head->data);QueuePop(&q);}QueueDestroy(&q);
}bool BinaryTreeComplete(BTNode* root) {if (!root) {return;}Queue q;QueueInit(&q);QueuePush(&q, root);while (QueueSize(&q) > 0) {BTNode* head = QueueFront(&q);if (head == NULL) {break;}QueuePush(&q, head->left);QueuePush(&q, head->right);QueuePop(&q);}while(!QueueEmpty(&q)){BTNode* head = QueueFront(&q);if (head) {QueueDestroy(&q);return false;}QueuePop(&q);}QueueDestroy(&q);return true;
}void BinaryTreeDestory(BTNode* root) {if (root==NULL) {return;}BinaryTreeDestory(root->left);BinaryTreeDestory(root->right);free(root);
}

在实现层序遍历时,会使用到队列。但由于C语言中没有现成的数据结构队列可以直接使用,需要自己实现。

queue.h

#pragma once
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
typedef struct BinaryTreeNode* QDataType;typedef struct QListNode{struct QListNode* next;QDataType data;
}QNode;// 队列的结构 
typedef struct Queue
{QNode* phead;QNode* ptail;int size;
}Queue;// 初始化队列 
void QueueInit(Queue* q);
// 队尾入队列 
void QueuePush(Queue* q, QDataType data);
// 队头出队列 
void QueuePop(Queue* q);
// 获取队列头部元素 
QDataType QueueFront(Queue* q);
// 获取队列队尾元素 
QDataType QueueBack(Queue* q);
// 获取队列中有效元素个数 
int QueueSize(Queue* q);
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q);
// 销毁队列 
void QueueDestroy(Queue* q);

queue.c

#define _CRT_SECURE_NO_WARNINGS
#include "queue.h"
// 初始化队列 
void QueueInit(Queue* q) {assert(q);q->phead = q->ptail = NULL;q->size = 0;
}
// 队尾入队列 
void QueuePush(Queue* q, QDataType data) {assert(q);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL) {perror("malloc fail!");exit(1);}else {newnode->data = data;newnode->next = NULL;if (q->ptail == NULL) {q->phead = q->ptail = newnode;q->size++;}else {q->ptail->next =newnode;q->ptail = newnode;q->size++;}}
}
// 队头出队列 
void QueuePop(Queue* q) {assert(q);assert(q->size != 0);if (q->phead->next == NULL) {free(q->ptail);q->ptail = q->phead = NULL;q->size--;}else {QNode* next = q->phead->next;free(q->phead);q->phead = next;q->size--;}
}
// 获取队列头部元素 
QDataType QueueFront(Queue* q) {assert(q);assert(q->size > 0);return q->phead->data;
}
// 获取队列队尾元素 
QDataType QueueBack(Queue* q) {assert(q);assert(q->size > 0);return q->ptail->data;
}
// 获取队列中有效元素个数 
int QueueSize(Queue* q) {assert(q);return q->size;
}
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q) {assert(q);return !QueueSize(q);
}
// 销毁队列 
void QueueDestroy(Queue* q) {assert(q);while (q->size) {QueuePop(q);}q->phead = NULL;q->ptail = NULL;
}

7.堆及堆排序及TopK问题

详见我的另一篇文章~(TopK问题待更)

数据结构 | 详解二叉树——堆与堆排序

这篇关于数据结构 | 二叉树(基本概念、性质、遍历、C代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018875

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S