多输入多输出非线性对象的模型预测控制—Matlab实现

2024-05-31 18:52

本文主要是介绍多输入多输出非线性对象的模型预测控制—Matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本示例展示了如何在 Simulink 中设计多输入多输出对象的闭环模型预测控制。该对象有三个操纵变量和两个测量输出。

一、非线性对象的线性化

运行该示例需要同时安装 Simulink 和 Simulink Control Design。

% 检查是否同时安装了 Simulink 和 Simulink Control Design
if ~mpcchecktoolboxinstalled('simulink')disp('运行此示例需要 Simulink(R)')return
end
if ~mpcchecktoolboxinstalled('slcontrol')disp('运行此示例需要Simulink Control Design(R)')return
end

1、打开非线性 Simulink 模型

open('mpc_nonlinmodel')

在这里插入图片描述
2、使用 Simulink 控制设计工具箱中的线性命令,在默认操作条件下(传递函数块的初始状态均为零)对对象进行线性化:

plant = linearize('mpc_nonlinmodel');

l i n e a r i z e \color{red}{linearize} linearize 函数的作用是对Simulink模型或子系统进行线性近似,以状态空间模型的形式返回。

3、输入输出变量名称分配

plant.InputName = {'Mass Flow';'Heat Flow';'Pressure'};
plant.OutputName = {'Temperature';'Level'};
plant.InputUnit = {'kg/s' 'J/s' 'Pa'};
plant.OutputUnit = {'K' 'm'};

注意:由于没有定义任何可测量或不可测量的干扰,也没有定义任何不可测量的输出,因此在根据该模型创建 MPC 控制器时,默认情况下所有的模型输入都被假定为可操作变量,所有的模型输出都被假定为可测量输出。

二、设计模型预测控制器

1、创建控制器对象,其采样周期、预测和控制范围分别为 0.2 秒、5 步和 2 次移动;

mpcobj = mpc(plant,0.2,5,2);

2、设置操作变量的约束

mpcobj.MV = struct('Min',{-3;-2;-2},'Max',{3;2;2},'RateMin',{-1000;-1000;-1000});

3、设置操作变量和输出信号的权重

mpcobj.Weights = struct('MV',[0 0 0],'MVRate',[.1 .1 .1],'OV',[1 1]);

4、查看 mpcobj 属性

mpcobj==> 
MPC object (created on 30-May-2024 15:35:11):
---------------------------------------------
Sampling time:      0.2 (seconds)
Prediction Horizon: 5
Control Horizon:    2Plant Model:        --------------3  manipulated variable(s)   -->|  5 states  ||            |-->  2 measured output(s)0  measured disturbance(s)   -->|  3 inputs  ||            |-->  0 unmeasured output(s)0  unmeasured disturbance(s) -->|  2 outputs |--------------
Disturbance and Noise Models:Output disturbance model: default (type "getoutdist(mpcobj)" for details)Measurement noise model: default (unity gain after scaling)Weights:ManipulatedVariables: [0 0 0]ManipulatedVariablesRate: [0.1000 0.1000 0.1000]OutputVariables: [1 1]ECR: 100000State Estimation:  Default Kalman Filter (type "getEstimator(mpcobj)" for details)Constraints:-3 <= Mass Flow (kg/s) <= 3, -1000 <= Mass Flow/rate (kg/s) <= Inf, Temperature (K) is unconstrained-2 <= Heat Flow (J/s) <= 2,  -1000 <= Heat Flow/rate (J/s) <= Inf,       Level (m) is unconstrained-2 <= Pressure (Pa) <= 2,    -1000 <= Pressure/rate (Pa) <= Inf                                  

三、使用 Simulink 进行闭环仿真

1、打开闭环仿真模型

mdl1 = 'mpc_nonlinear';
open_system(mdl1)

在这里插入图片描述
2、闭环仿真

sim(mdl1)-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

3、运行结果如下图所示:
Input:
在这里插入图片描述
Output:
在这里插入图片描述
尽管存在非线性,但几秒钟后,两个输出都能很好地跟踪其参考值,同时,正如预期的那样,被操纵的变量保持在预设的硬约束内。

四、修改MPC设计跟踪斜坡信号

为了既能跟踪斜坡,又能补偿非线性,可将两个输出端上的干扰模型定义为三重积分器(如果没有非线性,则使用双积分器即可)。

1、通过 tf 函数构造一个外部扰动模型outdistmodel:
2、通过 setoutdist 函数将上面构造的不可观测外部扰动传递函数 outdistmodel 添加到 MPC 的 model 中:

outdistmodel = tf({1 0; 0 1}, {[1 0 0 0], 1; 1, [1 0 0 0]});
setoutdist(mpcobj,'model',outdistmodel);

3、打开Simulink中的闭环仿真模型 mpc_nonlinear_setoutdist,它与上面的 mpc_nonlinear 闭环 Simulink 仿真模型相同,唯一不同的是参考信号,其参考信号的第一个由阶跃变为3秒以内以0.2斜率上升的斜坡信号。
在这里插入图片描述
4、闭环仿真12s

sim(mdl2, 12)

5、仿真结果如下图所示:
Input:
在这里插入图片描述
Output:
在这里插入图片描述

这篇关于多输入多输出非线性对象的模型预测控制—Matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018761

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter