ArcGIS空间数据处理、空间分析与制图;PLUS模型和InVEST模型的原理,参量提取与模型运行及结果分析;土地利用时空变化以及对生态系统服务的影响分析

本文主要是介绍ArcGIS空间数据处理、空间分析与制图;PLUS模型和InVEST模型的原理,参量提取与模型运行及结果分析;土地利用时空变化以及对生态系统服务的影响分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

工业革命以来,社会生产力迅速提高,人类活动频繁,此外人口与日俱增对土地的需求与改造更加强烈,人-地关系日益紧张。此外,土地资源的不合理开发利用更是造成了水土流失、植被退化、水资源短缺、区域气候变化、生物多样性锐减等一系列生态环境问题。如何优化土地利用模式,维持区域土地生态安全,缓和土地供需矛盾,使人-地关系协调共生作为关键问题,成为国内外研究热点。

【科研必备】"PLUS模型+"生态系统服务多情景模拟预测 (qq.com)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247553171&idx=4&sn=3c6c6cd63038c3adb4435c21223f423f&chksm=ce64fa78f913736e2d3260c34a52ece9fdbf8b0c8a51d1cdd2f61820d831748289beaf339dbb&scene=21#wechat_redirect

生态系统服务是人类直接或间接从生态系统中获得的惠益,在应对城市挑战和实施可持续发展方面发挥着至关重要的作用。随着全球城市化的快速发展, 频繁的人类活动导致了土地利用的快速变化,导致生态系统结构和功能的变化,影响生态系统服务的供应。因此,生态系统服务评估与未来城市土地规划的整合已成为近年来的一个重要研究课题。

情景分析方法目前是针对未来生态系统服务权衡和协同性研究最成熟的方法之一。通过建立不同的土地利用情景分析生态系统服务之间的变化和内部相互响应的作用,可为未来土地利用规划情景提出决策性建议。PLUS模型有两大模块,一是基于土地扩张分析策略的规则挖掘框架,二是基于多类型随机补丁种子的CA模型,此外该模型还内嵌了Markov chain,以便于对土地利用数量需要作出预测。PLUS模型能够以一个斑块级土地利用模拟模型,精准模拟土地利用背后的非线性关系变化,实现更加准确地未来不同政策情景下 土地利用对潜在生态系统服务功能的影响。

第一章、理论基础与软件讲解

1、概念界定与理论基础

l土地利用

l多情景模拟

l生态系统服务

2、地理数据简介

l地理数据库:

文件地理数据库:保存在文件系统文件夹中的多种类型的 GIS 数据集的集合;

个人地理数据库:在 Microsoft Access 数据文件中存储和管理的 ArcGIS 地理数据库的原始数据格式

l栅格数据:由按行和列(或格网)组织的像元(或像素)矩阵组成,其中的每个像元都包含一个信息值。栅格可以是数字航空像片、卫星影像、数字图片或甚至扫描的地图。

l矢量数据:存储地理要素的几何位置和属性信息的非拓扑简单格式,地理要素通过点、线或面(区域)来表示。

图片

3ArcGIS空间数据处理与分析介绍与实践

lArcGIS平台简介

lArcGIS常用坐标系

lArcGIS空间数据处理及转换

lArcGIS空间分析

lArcGIS制图技巧

4PLUS模型和InVEST模型介绍及安装

lPLUS版本介绍,安装;

lPLUS软件界面,常用功能介绍;

lInVEST版本介绍,安装;

lInVEST软件界面,常用功能介绍;

过去踩过的那些坑—常见错误和使用注意;路径问题等

第二章、数据获取与制备

1、土地利用数据

l土地利用数据集介绍及获取方法

l土地利用数据集选取

l土地利用数据预处理:影像拼接、裁剪、重投影等

2、驱动因子数据

l气候环境数据

l社会经济数据

图片

3、不同类型数据制备方法与实践

l栅格数据处理:

栅格影像拼接、裁剪、重投影及重采样等处理;

l基础地理信息数据处理及空间分析:

ü欧氏距离算法介绍与分析

ü密度分析算法介绍与分析

图片

l地形因子提取

坡度、坡向、地形起伏度、山体阴影等地形因子提取的原理与方法

图片

l土壤因子数据提取

ü属性表的编辑与导出

ü连接表的属性

ü重分类:多种可对输入像元值进行重分类或将输入像元值更改为替代值的方法

ü查找表:通过在输入栅格数据表中查找另一个字段的值来新建栅格

图片

l气象因子数据处理:

ü站点数据下载及提取

插值分析:反距离权重法(inverse distance weighting,IDW)、自

然邻域法、趋势面法和样条函数法等方法对气象站点数据插值分析;

üNetCDF 数据处理:根据 NetCDF 文件创建栅格图层

图片

l栅格数据的转换方法

图片

第三章、土地利用格局模拟

1、PLUS模型原理

l基于土地扩张分析策略的规则挖掘框架

l基于多类型随机斑块种子的CA模型

2、PLUS模型构建及精度验证

l土地利用扩张分析

图片

l模拟参数设置

(1)限制区域

(2)领域效应

(3)转化成本

(4)领域权重

(5)土地利用需求

利用Markov模型来预测完成。

图片

式中:StSt+1为tt+1时期土地利用,Pij为转移概率矩阵,n为土地利用类型。

l模型精度验证

总体精度(overall accuracy)

Kappa系数

3、不同情景下横断山区土地利用格局模拟

l自然发展情景下土地利用模拟

l生态保护情景下土地利用模拟

l经济发展优先情景下土地利用模拟

图片

第四章、生态系统服务评估

1、InVEST模型原理与模块

2、产水服务

图片

l数据需求与制备:

图片

3、土壤保持

图片

l数据需求与制备:

图片

4、碳储量

图片

l数据需求与制备:

图片

5、生境质量

图片

l数据需求与制备:

图片

第五章、时空变化及驱动机制分析

1、土地利用时空变化分析

l土地利用结构变化分析

l土地利用动态度分析

l土地利用转移矩阵分析

l土地利用标准差椭圆分析

图片

2、空间自相关 (Global Moran's I) (Spatial Statistics) 分析原理与实践

图片

图片

3、高/低聚类(Getis-Ord General G)分析 的工作原理与实践

l使用 Getis-Ord General G 统计可度量高值或低值的聚类程度。

图片

4、空间分层异质性分析

l地理探测器原理

l地理探测器模块安装与介绍

l因子检测

图片

l交互探测

图片

图片

5、局域回归分析

l地理加权回归模型介绍

图片

l模型建立的基本准则

(1)空间权重系数确定

(2)带宽选择准则

l参数及评价指标分析

l回归系数空间格局分析

图片

第六章、论文撰写技巧及案例分析

1、科技论文结构

介绍摘要、绪论、方法、结果、讨论、结论的写作要点

2、科技论文图表规范

3论文投稿技巧分析

4.SCI论文案例分析

5模型应用可拓展方向

【科研必备】"PLUS模型+"生态系统服务多情景模拟预测 (qq.com)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247553171&idx=4&sn=3c6c6cd63038c3adb4435c21223f423f&chksm=ce64fa78f913736e2d3260c34a52ece9fdbf8b0c8a51d1cdd2f61820d831748289beaf339dbb&scene=21#wechat_redirect

这篇关于ArcGIS空间数据处理、空间分析与制图;PLUS模型和InVEST模型的原理,参量提取与模型运行及结果分析;土地利用时空变化以及对生态系统服务的影响分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018523

相关文章

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

mybatis-plus QueryWrapper中or,and的使用及说明

《mybatis-plusQueryWrapper中or,and的使用及说明》使用MyBatisPlusQueryWrapper时,因同时添加角色权限固定条件和多字段模糊查询导致数据异常展示,排查发... 目录QueryWrapper中or,and使用列表中还要同时模糊查询多个字段经过排查这就导致只要whe

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1