BPTT算法详解:深入探究循环神经网络(RNN)中的梯度计算【原理理解】

本文主要是介绍BPTT算法详解:深入探究循环神经网络(RNN)中的梯度计算【原理理解】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在深度学习领域中,我们经常处理的是独立同分布(i.i.d)的数据,比如图像分类、文本生成等任务,其中每个样本之间相互独立。然而,在现实生活中,许多数据具有时序结构,例如语言模型中的单词序列、股票价格随时间的变化、视频中的帧等。对于这类具有时序关系的数据,传统的深度学习模型可能无法很好地捕捉到其内在的 时间相关性 。为了解决这一问题,循环神经网络(Recurrent Neural Network, RNN)被广泛应用于处理时序数据。

为什么说反向传播算法不能处理时序数据呢?
在传统的反向传播算法中,处理静态数据时,网络的输出 y ^ \hat{y} y^ 通常只依赖于当前时刻的隐藏状态 h h h,其更新规则可以表示为:
h = W x + b h = Wx + b h=Wx+b
y ^ = V h + c \hat{y} = Vh + c y^=Vh+c
其中, h h h 是隐藏状态, x x x 是输入, W W W V V V 是网络的参数, b b b c c c 是偏置项。

与传统反向传播算法不同,BPTT(Back-Propagation Through Time)算法引入了时间维度,并考虑了序列数据中的时序关系。在 BPTT 中,隐藏状态 h t h_t ht 的更新规则包含了当前时刻的输入 X t X_t Xt 和上一个时刻的隐藏状态 h t − 1 h_{t-1} ht1,从而能够更好地捕捉到序列数据中的时间相关性。
h t = f ( U X t + W h t − 1 ) h_t = f(UX_t + Wh_{t-1}) ht=f(UXt+Wht1)
y t ^ = f ( V h t ) \hat{y_t} = f(Vh_t) yt^=f(Vht)

RNN 结构与BPTT

首先,让我们来了解一下常见的循环神经网络结构。在 RNN 中,隐藏状态会随着时间步的推移而更新,并在每个时间步生成一个输出。这种结构允许网络捕捉到序列数据中的时间相关性,使得其在时序任务中表现出色。

一个常见的RNN结构如下所示:
RNN结构
在RNN中,参数U、V和W是共享的,这意味着它们在每个时间步都保持不变。这意味着它们的值在整个模型运行过程中 始终保持一致

BPTT算法概述

前向传播

在 RNN 中,前向传播阶段通过计算隐藏状态和输出来生成预测结果。

h t = f ( U X t + W h t − 1 ) h_t = f(UX_t + Wh_{t-1}) ht=f(UXt+Wht1)

y t ^ = f ( V h t ) \hat{y_t} = f(Vh_t) yt^=f(Vht)

损失函数

这些结果与真实标签之间的差异通过损失函数来衡量,我们的目标是最小化这个损失函数。整个网络的损失值 L L L是每个时刻损失值 L t L_t Lt的求和,其中 L t L_t Lt是关于预测值 y t ^ \hat{y_t} yt^的函数。

L t = f ( y t ^ ) L_t = f(\hat{y_t}) Lt=f(yt^)
L = ∑ i = 1 T L t L = \sum_{i=1}^{T} L_t L=i=1TLt

损失函数 L L L 可以表示为:

  1. 均方误差(MSE):
    L = ∑ t = 1 T 1 2 ( y t − y ^ t ) 2 L = \sum_{t=1}^T \frac{1}{2} (y_t - \hat{y}_t)^2 L=t=1T21(yty^t)2
    这里,我们计算每个时间步的输出 y t y_t yt 与真实输出 y ^ t \hat{y}_t y^t 之间的平方误差,并将所有时间步的误差求和。
  2. 交叉熵损失:
    L = − ∑ t = 1 T [ y ^ t log ⁡ ( y t ) + ( 1 − y ^ t ) log ⁡ ( 1 − y t ) ] L = -\sum_{t=1}^T [\hat{y}_t \log(y_t) + (1 - \hat{y}_t) \log(1 - y_t)] L=t=1T[y^tlog(yt)+(1y^t)log(1yt)]
    这里,我们计算每个时间步的输出 y t y_t yt 与真实输出 y ^ t \hat{y}_t y^t 之间的交叉熵损失,并将所有时间步的损失求和。

反向传播

接下来,我们使用BPTT算法(随时间反向传播,Back-Propagation Through Time,BPTT)进行反向传播。在这一步中,我们计算损失函数对参数U、V和W的偏导数,以便更新参数以最小化损失。

为什么要使用整个序列的损失函数L对参数U、V和W求导呢?

这是因为我们的目标是最小化整个序列的损失。在梯度下降算法中,梯度指向了损失函数增长最快的方向。因此,通过对整个序列的损失函数求导,我们可以找到在参数空间中使得损失函数逐步减小的方向,然后通过反向传播来更新参数。

由于RNN处理的是时序数据,因此需要基于时间进行反向传播,这也是BPTT名称的由来。尽管BPTT是在时序数据上进行反向传播,但本质上它仍然是反向传播算法,因此求解每个时间步的梯度是该算法的核心操作。

梯度计算

我们以一个长度为3的时间序列为例,展示对于参数U、V和W的偏导数的计算过程。

长度为3的时间序列
首先看看前向传播的计算

隐藏层输出:
h t = f ( U X t + W h t − 1 ) h_t = f(UX_t + Wh_{t-1}) ht=f(UXt+Wht1)

为什么“RNN的隐藏状态更新规则是 h t = f ( U X t + W h t − 1 ) h_t = f(UX_t + Wh_{t-1}) ht=f(UXt+Wht1)”?

从数学角度来看,这个更新规则是由RNN的结构决定的。在RNN中,隐藏状态
h t h_t ht

  • 由当前时间步的输入 X t X_t Xt
  • 前一个时间步的隐藏状态 h t − 1 h_{t-1} ht1

组合而成的。通过线性变换 U X t + W h t − 1 UX_t + Wh_{t-1} UXt+Wht1,加上激活函数 f f f 的作用,得到了新的隐藏状态 h t h_t ht。这个结构使得RNN能够记忆之前的信息并将其应用于当前的预测任务中。

输出层:
y t ^ = f ( V h t ) \hat{y_t} = f(Vh_t) yt^=f(Vht)

  • h t h_t ht 是隐藏状态
  • y t ^ \hat{y_t} yt^ 是输出值
  • X t X_t Xt 输入的序列
  • f f f是激活函数

将上面的RNN用数学表达式来表示就是
{ h 1 = f ( U x 1 + W h 0 ) y ^ 1 = f ( V h 1 ) \left\{\begin{array}{l}h_{1}=f\left(U x_{1}+W h_{0}\right) \\\hat{y}_{1}=f\left(V h_{1}\right)\end{array}\right. {h1=f(Ux1+Wh0)y^1=f(Vh1)
{ h 2 = f ( U x 2 + W h 1 ) y ^ 2 = f ( V h 2 ) \left\{\begin{array}{l}h_{2}=f\left(U x_{2}+W h_{1}\right) \\\hat{y}_{2}=f\left(V h_{2}\right)\end{array}\right. {h2=f(Ux2+Wh1)y^2=f(Vh2)
{ h 3 = f ( U x 3 + W h 2 ) y ^ 3 = f ( V h 1 ) \left\{\begin{array}{l}h_{3}=f\left(U x_{3}+W h_{2}\right) \\\hat{y}_{3}=f\left(V h_{1}\right)\end{array}\right. {h3=f(Ux3+Wh2)y^3=f(Vh1)

针对 t = 3 t=3 t=3时刻,求U,V,W的梯度(偏导),使用链式法则得到:

∂ L 3 ∂ V = ∂ L 3 y ^ 3 × ∂ y ^ 3 ∂ V \frac{\partial L_3}{\partial V} = \frac{\partial L_3}{\hat{y}_{3}} \times \frac{\partial \hat{y}_{3}}{\partial V} VL3=y^3L3×Vy^3

∂ L 3 ∂ W = ∂ L 3 ∂ y ^ 3 × ∂ y ^ 3 ∂ h 3 × ∂ h 3 ∂ W + ∂ L 3 ∂ y ^ 3 × ∂ y ^ 3 ∂ h 3 × ∂ h 3 ∂ h 2 × ∂ h 2 ∂ W + ∂ L 3 ∂ y ^ 3 × ∂ y ^ 3 ∂ h 3 × ∂ h 3 ∂ h 2 × ∂ h 2 ∂ h 1 × ∂ h 1 ∂ W \frac{\partial L_{3}}{\partial W}=\frac{\partial L_{3}}{\partial \hat{y}_{3}} \times \frac{\partial \hat{y}_{3}}{\partial h_{3}} \times \frac{\partial h_{3}}{\partial W}+\frac{\partial L_{3}}{\partial \hat{y}_{3}} \times \frac{\partial \hat{y}_{3}}{\partial h_{3}} \times \frac{\partial h_{3}}{\partial h_{2}} \times \frac{\partial h_{2}}{\partial W}+\frac{\partial L_{3}}{\partial \hat{y}_{3}} \times \frac{\partial \hat{y}_{3}}{\partial h_{3}} \times\frac{\partial h_{3}}{\partial h_{2}} \times \frac{\partial h_{2}}{\partial h_{1}} \times \frac{\partial h_{1}}{\partial W} WL3=y^3L3×h3y^3×Wh3+y^3L3×h3y^3×h2h3×Wh2+y^3L3×h3y^3×h2h3×h1h2×Wh1

∂ L 3 ∂ U = ∂ L 3 ∂ y ^ 3 × ∂ y ^ 3 ∂ h 3 × ∂ h 3 ∂ U + ∂ L 3 ∂ y ^ 3 × ∂ y ^ 3 ∂ h 3 × ∂ h 3 ∂ h 2 × ∂ h 2 ∂ U + ∂ L 3 ∂ y ^ 3 × ∂ y ^ 3 ∂ h 3 × ∂ h 3 ∂ h 2 × ∂ h 2 ∂ h 1 × ∂ h 1 ∂ U \frac{\partial L_{3}}{\partial U}=\frac{\partial L_{3}}{\partial \hat{y}_{3}} \times \frac{\partial \hat{y}_{3}}{\partial h_{3}} \times \frac{\partial h_{3}}{\partial U}+\frac{\partial L_{3}}{\partial \hat{y}_{3}} \times \frac{\partial \hat{y}_{3}}{\partial h_{3}} \times \frac{\partial h_{3}}{\partial h_{2}} \times \frac{\partial h_{2}}{\partial U}+\frac{\partial L_{3}}{\partial \hat{y}_{3}} \times \frac{\partial \hat{y}_{3}}{\partial h_{3}} \times\frac{\partial h_{3}}{\partial h_{2}} \times \frac{\partial h_{2}}{\partial h_{1}} \times \frac{\partial h_{1}}{\partial U} UL3=y^3L3×h3y^3×Uh3+y^3L3×h3y^3×h2h3×Uh2+y^3L3×h3y^3×h2h3×h1h2×Uh1

其实这个时候我们就可以看出,W和U两个参数的需要追溯之前的历史数据,参数V只需关注目前

所以,我们可以根据t3时刻的偏导,来计算任意时刻对U,V,W的偏导

对于V的偏导

对于V的偏导,我们直接将3替换成t即可:
∂ L t ∂ V = ∂ L t y ^ t × ∂ y ^ t ∂ V \frac{\partial L_t}{\partial V} = \frac{\partial L_t}{\hat{y}_{t}} \times \frac{\partial \hat{y}_{t}}{\partial V} VLt=y^tLt×Vy^t

对于W的偏导

对于W的偏导,在 t = 3 t=3 t=3的时刻有三项,那么对应的在T时刻就有T项

∂ L t ∂ W = ∑ k = 1 t ∂ L t ∂ y t ^ × ∂ y t ^ ∂ h t × ∂ h t ∂ h k × ∂ h k W \frac{\partial L_{t}}{\partial W}= \sum_{k=1}^{t} \frac{\partial L_t}{\partial \hat{y_t} } \times \frac{\partial \hat{y_t} }{\partial h_t} \times \frac{\partial h_t}{\partial h_k} \times \frac{\partial h_k}{W} WLt=k=1tyt^Lt×htyt^×hkht×Whk

其中的 ∂ h t ∂ h k \frac{\partial h_t}{\partial h_k} hkht,我们可以进行展开:

例如在 k = 1 k=1 k=1时, ∂ h 3 ∂ h 1 = ∂ h 3 ∂ h 2 × ∂ h 2 ∂ h 1 \frac{\partial h_3}{\partial h_1} = \frac{\partial h_3}{\partial h_2} \times \frac{\partial h_2}{\partial h_1} h1h3=h2h3×h1h2

所以我们推导得到以下式子:
∂ h t ∂ h k = ∂ h t ∂ h k × ∂ h t − 1 ∂ h t − 2 × . . . × ∂ h t − k + 1 ∂ h k \frac{\partial h_t}{\partial h_k} = \frac{\partial h_t}{\partial h_k} \times \frac{\partial h_{t-1}}{\partial h_{t-2}} \times ... \times \frac{\partial h_{t-k+1}}{\partial h_{k}} hkht=hkht×ht2ht1×...×hkhtk+1

也就是等于:
∂ h t ∂ h k = ∏ i = k + 1 t ∂ h i ∂ h i − 1 \frac{\partial h_t}{\partial h_k} = \prod_{i = k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} hkht=i=k+1thi1hi

所以,
∂ L t ∂ W = ∑ k = 1 t ∂ L t ∂ y t ^ × ∂ y t ^ ∂ h t × ( ∏ i = k + 1 t ∂ h i ∂ h i − 1 ) × ∂ h k W \frac{\partial L_{t}}{\partial W}= \sum_{k=1}^{t} \frac{\partial L_t}{\partial \hat{y_t} } \times \frac{\partial \hat{y_t} }{\partial h_t} \times (\prod_{i = k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} ) \times \frac{\partial h_k}{W} WLt=k=1tyt^Lt×htyt^×(i=k+1thi1hi)×Whk

对于U的偏导

同样的,我们也可以得到对于U的偏导

∂ L t ∂ U = ∑ k = 1 t ∂ L t ∂ y t ^ × ∂ y t ^ ∂ h t × ( ∏ i = k + 1 t ∂ h i ∂ h i − 1 ) × ∂ h k U \frac{\partial L_{t}}{\partial U}= \sum_{k=1}^{t} \frac{\partial L_t}{\partial \hat{y_t} } \times \frac{\partial \hat{y_t} }{\partial h_t} \times (\prod_{i = k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} ) \times \frac{\partial h_k}{U} ULt=k=1tyt^Lt×htyt^×(i=k+1thi1hi)×Uhk

为什么U也是这样的链式求导?
h t = f ( U X t + W h t − 1 ) h_t = f(UX_t + Wh_{t-1}) ht=f(UXt+Wht1)
U也是通过链式法则求导的,因为隐藏状态 h t h_t ht是由 U U U X t X_t Xt h t − 1 h_{t-1} ht1共同决定的。因此,当我们计算损失函数关于U的偏导数时,需要考虑 h t h_t ht U U U的影响,而 h t h_t ht又依赖于 h t − 1 h_{t-1} ht1,因此需要使用链式法则进行求导。

当前我们得到了是t时刻的导数,现在我们需要推广到整个网络中的损失值对U,V,W的偏导

总的损失值

因为和的导数等于导数,所以我们可以直接将 L = ∑ i = 1 T L t L = \sum_{i=1}^{T} L_t L=i=1TLt前面的求和符号提出来
所以有,
∂ L ∂ W = ∑ i = 1 T ∂ L t ∂ W \frac{\partial L}{\partial W}= \sum_{i=1}^{T} \frac{\partial L_t}{\partial W} WL=i=1TWLt

现在我们只需要将前面求得的t时刻的带入即可,
∂ L ∂ W = ∑ i = 1 T ∑ k = 1 t ∂ L t ∂ y t ^ × ∂ y t ^ ∂ h t × ( ∏ i = k + 1 t ∂ h i ∂ h i − 1 ) × ∂ h k W \frac{\partial L}{\partial W}= \sum_{i=1}^{T}\sum_{k=1}^{t} \frac{\partial L_t}{\partial \hat{y_t} } \times \frac{\partial \hat{y_t} }{\partial h_t} \times (\prod_{i = k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} ) \times \frac{\partial h_k}{W} WL=i=1Tk=1tyt^Lt×htyt^×(i=k+1thi1hi)×Whk

同样的,对于U,我们得到:
∂ L ∂ U = ∑ i = 1 T ∑ k = 1 t ∂ L t ∂ y t ^ × ∂ y t ^ ∂ h t × ( ∏ i = k + 1 t ∂ h i ∂ h i − 1 ) × ∂ h k U \frac{\partial L}{\partial U}= \sum_{i=1}^{T}\sum_{k=1}^{t} \frac{\partial L_t}{\partial \hat{y_t} } \times \frac{\partial \hat{y_t} }{\partial h_t} \times (\prod_{i = k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} ) \times \frac{\partial h_k}{U} UL=i=1Tk=1tyt^Lt×htyt^×(i=k+1thi1hi)×Uhk

对于V,我们得到:

∂ L ∂ V = ∑ i = 1 T ∂ L t y ^ t × ∂ y ^ t ∂ V \frac{\partial L}{\partial V}= \sum_{i=1}^{T}\frac{\partial L_t}{\hat{y}_{t}} \times \frac{\partial \hat{y}_{t}}{\partial V} VL=i=1Ty^tLt×Vy^t

梯度爆炸和梯度消失问题

在W和U中,存在一个连乘 ∏ i = k + 1 t ∂ h i ∂ h i − 1 \prod_{i = k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} i=k+1thi1hi;也就是说,会出现指数级别的问题;

如果 ∂ h i ∂ h i − 1 > 1 \frac{\partial h_i}{\partial h_{i-1}} > 1 hi1hi>1的话,那么连乘的结果可能会快速增长,导致梯度爆炸。
在这里插入图片描述

如果 ∂ h i ∂ h i − 1 < 1 \frac{\partial h_i}{\partial h_{i-1}} < 1 hi1hi<1的话,连乘的结果会迅速衰减到零,导致梯度消失
在这里插入图片描述
我们来求解一下关于 ∂ h i ∂ h i − 1 \frac{\partial h_i}{\partial h_{i-1}} hi1hi数学上的表示:

因为 h t = f ( U X t + W h t − 1 ) h_t = f(UX_t + Wh_{t-1}) ht=f(UXt+Wht1),所以我们可以得到
∂ h i ∂ h i − 1 = f ′ × W \frac{\partial h_i}{\partial h_{i-1}} = f'\times W hi1hi=f×W

因为 f ′ ∈ [ 0 , 0.25 ] f'∈[0,0.25] f[0,0.25](假设为Sigmoid函数),所以说

  • 如果 W < 4 W < 4 W<4,那么连乘很多次后,导致梯度消失
  • 如果 W > 4 W > 4 W>4,那么连乘很多次后,导致梯度爆炸

为什么 f ′ ∈ [ 0 , 0.25 ] f' \in [0, 0.25] f[0,0.25]

f f f 是Sigmoid函数,其导数 f ′ f' f 的取值范围在0到0.25之间。

Sigmoid函数的导数表达式为 f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) f'(x) = f(x)(1-f(x)) f(x)=f(x)(1f(x)),其中 f ( x ) f(x) f(x) 的取值范围在0到1之间。因此, f ′ ( x ) f'(x) f(x) 的最大值为 0.25 0.25 0.25,在 x = 0.5 x = 0.5 x=0.5 时取得。
如图所示
在这里插入图片描述

解决梯度消失和梯度爆炸的方法

为了缓解梯度消失和梯度爆炸问题,可以采用以下几种常见的方法:

  1. 梯度裁剪(Gradient Clipping)

    • 将梯度的绝对值限制在某个阈值范围内,防止梯度爆炸。
    • 例如,当梯度超过某个阈值时,将其裁剪到这个阈值。
  2. 正则化方法

    • 使用L2正则化(权重衰减)防止过度活跃的神经元。
    • 增加权重更新时的惩罚项,控制权重值不至于过大。
  3. 批归一化(Batch Normalization)

    • 对每个时间步的隐藏状态进行归一化,稳定训练过程。
    • 通过归一化,控制每个时间步的输出范围,防止梯度过大或过小。
  4. 调整激活函数

    • 选择适当的激活函数(如ReLU、Leaky ReLU等),防止梯度消失和爆炸。
    • 例如,Leaky ReLU 在负区间也有非零导数,避免了完全的梯度消失问题。

为什么很小的梯度无法更新权重并导致无法捕捉长期依赖关系?

当梯度非常小时,反向传播的权重更新公式:

Δ W = − η ⋅ ∂ L ∂ W \Delta W = -\eta \cdot \frac{\partial L}{\partial W} ΔW=ηWL

梯度项 ∂ L ∂ W \frac{\partial \mathcal{L}}{\partial W} WL 会非常小。这里, η \eta η 是学习率。当梯度接近零时,权重更新 Δ W \Delta W ΔW 也会接近零。这意味着神经网络的权重几乎不会发生变化,导致模型无法从训练数据中学习到有用的信息,从而无法有效捕捉长期依赖关系。

这篇关于BPTT算法详解:深入探究循环神经网络(RNN)中的梯度计算【原理理解】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1016324

相关文章

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊