ES大批量写入提高性能的策略

2024-05-30 13:32

本文主要是介绍ES大批量写入提高性能的策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、用bulk批量写入

你如果要往es里面灌入数据的话,那么根据你的业务场景来,如果你的业务场景可以支持让你将一批数据聚合起来,一次性写入es,那么就尽量采用bulk的方式,每次批量写个几百条这样子。

bulk批量写入的性能比你一条一条写入大量的document的性能要好很多。但是如果要知道一个bulk请求最佳的大小,需要对单个es node的单个shard做压测。先bulk写入100个document,然后200个,400个,以此类推,每次都将bulk size加倍一次。如果bulk写入性能开始变平缓的时候,那么这个就是最佳的bulk大小。并不是bulk size越大越好,而是根据你的集群等环境具体要测试出来的,因为越大的bulk size会导致内存压力过大,因此最好一个请求不要发送超过10mb的数据量。

先确定一个是bulk size,此时就尽量是单线程,一个es node,一个shard,进行测试。看看单线程最多一次性写多少条数据,性能是比较好的。

2、使用多线程将数据写入es

单线程发送bulk请求是无法最大化es集群写入的吞吐量的。如果要利用集群的所有资源,就需要使用多线程并发将数据bulk写入集群中。为了更好的利用集群的资源,这样多线程并发写入,可以减少每次底层磁盘fsync的次数和开销。首先对单个es节点的单个shard做压测,比如说,先是2个线程,然后是4个线程,然后是8个线程,16个,每次线程数量倍增。一旦发现es返回了TOO_MANY_REQUESTS的错误,JavaClient也就是EsRejectedExecutionException。此时那么就说明es是说已经到了一个并发写入的最大瓶颈了,此时我们就知道最多只能支撑这么高的并发写入了。

3、增加refresh间隔

默认的refresh间隔是1s,用index.refresh_interval参数可以设置,这样会其强迫es每秒中都将内存中的数据写入磁盘中,创建一个新的segment file。正是这个间隔,让我们每次写入数据后,1s以后才能看到。但是如果我们将这个间隔调大,比如30s,可以接受写入的数据30s后才看到,那么我们就可以获取更大的写入吞吐量,因为30s内都是写内存的,每隔30s才会创建一个segment file。

4、禁止refresh和replia

如果我们要一次性加载大批量的数据进es,可以先禁止refresh和replia复制,将index.refresh_interval设置为-1,将index.number_of_replicas设置为0即可。这可能会导致我们的数据丢失,因为没有refresh和replica机制了。但是不需要创建segment file,也不需要将数据replica复制到其他的replica shasrd上面去。此时写入的速度会非常快,一旦写完之后,可以将refresh和replica修改回正常的状态。

5、禁止swapping交换内存

如果要将es jvm内存交换到磁盘,再交换回内存,大量磁盘IO,性能很差

6、给filesystem cache更多的内存

filesystem cache被用来执行更多的IO操作,如果我们能给filesystemcache更多的内存资源,那么es的写入性能会好很多。

7、使用自动生成的id

如果我们要手动给es document设置一个id,那么es需要每次都去确认一下那个id是否存在,这个过程是比较耗费时间的。如果我们使用自动生成的id,那么es就可以跳过这个步骤,写入性能会更好。对于你的业务中的表id,可以作为es document的一个field。

8、用性能更好的硬件

我们可以给filesystem cache更多的内存,也可以使用SSD替代机械硬盘,避免使用NAS等网络存储,考虑使用RAID 0来条带化存储提升磁盘并行读写效率,等等。

9、index buffer

如果我们要进行非常重的高并发写入操作,那么最好将index buffer调大一些,indices.memory.index_buffer_size,这个可以调节大一些,设置的这个index buffer大小,是所有的shard公用的,但是如果除以shard数量以后,算出来平均每个shard可以使用的内存大小,一般建议,但是对于每个shard来说,最多给512mb,因为再大性能就没什么提升了。es会将这个设置作为每个shard共享的index buffer,那些特别活跃的shard会更多的使用这个buffer。默认这个参数的值是10%,也就是jvm heap的10%,如果我们给jvmheap分配10gb内存,那么这个index buffer就有1gb,对于两个shard共享来说,是足够的了。

这篇关于ES大批量写入提高性能的策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1016278

相关文章

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty