大数据晋级之路(7)Storm安装及使用

2024-05-30 06:58

本文主要是介绍大数据晋级之路(7)Storm安装及使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

一、Apache Storm简介

Apache Storm简介

Storm是一个分布式的,可靠的,容错的数据流处理系统。Storm集群的输入流由一个被称作spout的组件管理,spout把数据传递给bolt, bolt要么把数据保存到某种存储器,要么把数据传递给其它的bolt。一个Storm集群就是在一连串的bolt之间转换spout传过来的数据。

Storm组件

在Storm集群中,有两类节点:主节点master node和工作节点worker nodes。主节点运行Nimbus守护进程,这个守护进程负责在集群中分发代码,为工作节点分配任务,并监控故障。Supervisor守护进程作为拓扑的一部分运行在工作节点上。一个Storm拓扑结构在不同的机器上运行着众多的工作节点。每个工作节点都是topology中一个子集的实现。而Nimbus和Supervisor之间的协调则通过Zookeeper系统或者集群。

Zookeeper

Zookeeper是完成Supervisor和Nimbus之间协调的服务。而应用程序实现实时的逻辑则被封装进Storm中的“topology”。topology则是一组由Spouts(数据源)和Bolts(数据操作)通过Stream Groupings进行连接的图。

Spout

Spout从来源处读取数据并放入topology。Spout分成可靠和不可靠两种;当Storm接收失败时,可靠的Spout会对tuple(元组,数据项组成的列表)进行重发;而不可靠的Spout不会考虑接收成功与否只发射一次。而Spout中最主要的方法就是nextTuple(),该方法会发射一个新的tuple到topology,如果没有新tuple发射则会简单的返回。

Bolt

Topology中所有的处理都由Bolt完成。Bolt从Spout中接收数据并进行处理,如果遇到复杂流的处理也可能将tuple发送给另一个Bolt进行处理。而Bolt中最重要的方法是execute(),以新的tuple作为参数接收。不管是Spout还是Bolt,如果将tuple发射成多个流,这些流都可以通过declareStream()来声明。

Stream Groupings

Stream Grouping定义了一个流在Bolt任务中如何被切分。

1. Shuffle grouping:随机分发tuple到Bolt的任务,保证每个任务获得相等数量的tuple。

2.Fields grouping:根据指定字段分割数据流,并分组。例如,根据“user-id”字段,相同“user-id”的元组总是分发到同一个任务,不同“user-id”的元组可能分发到不同的任务。

3. Partial Key grouping:根据指定字段分割数据流,并分组。类似Fields grouping。

4.All grouping:tuple被复制到bolt的所有任务。这种类型需要谨慎使用。

5. Global grouping:全部流都分配到bolt的同一个任务。明确地说,是分配给ID最小的那个task。

6. None grouping:无需关心流是如何分组。目前,无分组等效于随机分组。但最终,Storm将把无分组的Bolts放到Bolts或Spouts订阅它们的同一线程去执行(如果可能)。

7. Direct grouping:这是一个特别的分组类型。元组生产者决定tuple由哪个元组处理者任务接收。

8. Local or shuffle grouping:如果目标bolt有一个或多个任务在同一工作进程,tuples 会打乱这些进程内的任务。否则,这就像一个正常的 Shuffle grouping。

二、Zookeeper集群安装

具体参见https://blog.csdn.net/u011095110/article/details/84145164

三、下载解压storm

进入目标目录我的是cd /hadoop,然后wget下载和解压

wget http://mirrors.tuna.tsinghua.edu.cn/apache/storm/apache-storm-1.2.2/apache-storm-1.2.2.tar.gz 
tar -zxvf apache-storm-1.2.2.tar.gz

四、修改配置文件

  • storm.yaml

配置zookeeper集群地址,storm.local.dir和slot.ports,配置nimbus.seeds主节点地址:用于配置主控节点的地址,可以配置多个

cd /hadoop/apache-storm-1.2.2/conf
vim storm.yaml
storm.zookeeper.servers:- "master.hadoop"- "slave1.hadoop"- "slave2.hadoop"
storm.local.dir: "/data/hadoop/storm"
#     - "server2"
# 
# nimbus.seeds: ["host1", "host2", "host3"]
#
nimbus.seeds: ["master.hadoop"]
supervisor.slots.ports:- 6700- 6701- 6702- 6703
  • 拷贝将配置好的storm拷贝到两个supervisor节点(slave1.hadoop和slave2.hadoop是我的两个从节点hostname)
scp -r /hadoop/apache-storm-1.2.2 root@slave1.hadoop:/hadoop/
scp -r /hadoop/apache-storm-1.2.2 root@slave2.hadoop:/hadoop/
  • 对于两台supervisor node,我们额外开启JMX支持,在配置文件中加入如下配置:
supervisor.childopts: -verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.port=9998
  • 主从节点机器上配置环境变量
[root@master apache-storm-0.10.0]# vim /etc/profile
export STORM_HOME=/hadoop/apache-storm-1.2.2
export PATH=$STORM_HOME/bin:$PATH
[root@master apache-storm-0.10.0]# source /etc/profile
  • 创建storm.yaml里设置的数据目录

在3台主机分别创建上面设置的数据目录,必须都要创建:

mkdir -p /data/hadoop/storm

五、启动主从节点storm

  • 主节点启动nimubus和storm web ui
[root@master ~]# nohup storm ui > ui.out &
[root@master ~]# nohup storm nimbus > nimbus.out &
  • 从节点启动supervisor
[root@slave1~]# nohup storm supervisor > supervisor.out &
[root@slave2 ~]# nohup storm supervisor >supervisor.out &
  • 查看storm ui

这篇关于大数据晋级之路(7)Storm安装及使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015860

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符