Python高层解雇和客户活跃度量化不确定性模型

2024-05-30 05:36

本文主要是介绍Python高层解雇和客户活跃度量化不确定性模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯量化不确定性模型:🖊模型检测短信编写者行为变化 | 🖊确定(商业领域中)竞争性替代方案 | 🖊确定作弊供词真实比例 | 🖊学生考试作弊 | 🖊确定零部件损坏导致的灾难事故原因 | 🖊马尔可夫链蒙特卡罗算法先验-后验范式可视化 | 🖊聚类寻找信息隐藏源头 | 🖊模型确定和纠正虚假商品星评 | 🖊客户商品价格优化呈现 | 🖊星系位置和椭圆率模拟 | 🖊最大化赌场奖金策略 | 🖊证券分析。

🎯动态分析和常微分方程推理流感传播 | 🎯高层领导被解雇模型预测 | 🎯客户活跃度模型预测 | 🎯热饮冷却非线性模型动态分析 | 🎯多级回归和后分层预测公众人物角逐 | 🎯模型分析专业人士对比机器学习工具的优劣​ | 🎯销售领域利润率建模 | 🎯模型分析定位无线网络用户位置。

🍇Python贝叶斯推理

贝叶斯推理是一种找出变量分布的方法(例如高度 h h h 的分布)。贝叶斯推理的有趣特征是,统计学家(或数据科学家)可以利用他们的先验知识作为改进我们对分布情况的猜测的手段。贝叶斯推理依赖于贝叶斯统计的主要公式:贝叶斯定理。贝叶斯定理接受我们对分布的假设,即新的数据,并输出更新后的分布。对于数据科学,贝叶斯定理通常表示如下:
P ( θ ∣ Data  ) = P ( Data  ∣ θ ) ∗ P ( θ ) P ( Data  ) P(\theta \mid \text { Data })=\frac{P(\text { Data } \mid \theta) * P(\theta)}{P(\text { Data })} P(θ Data )=P( Data )P( Data θ)P(θ)

  • P ( θ ∣ D a t a ) P(\theta \mid D a t a) P(θData) 后验
  • P ( P( P( Data ∣ θ ) \mid \theta) θ) 似然
  • P ( θ ) P(\theta) P(θ) 先验
  • P ( P( P( Data ) ) ) 事实

我们可以从贝叶斯定理中看出,先验是一个概率:P(θ)。首先,让我们深入研究一下“θ”的含义。θ 通常表示为我们对最能描述我们试图研究的变量的模型的假设。让我们回到身高的例子。根据背景知识和常识,我们推断出身高在一个班级中呈正态分布。正式来说:
h ∼ N ( μ , σ ) h \sim N (\mu, \sigma) hN(μ,σ)
其中 N N N表示正态分布, μ \mu μ表示平均值, σ \sigma σ表示标准差。

现在,我们的先验并不完全是上面的表达式。相反,它是我们对每个参数 μ \mu μ σ \sigma σ 如何分布的假设。请注意,这就是贝叶斯统计的定义特征的体现:我们如何找到这些参数的分布?有趣的是,我们根据先验知识“编造”它们。如果我们的先验知识很少,我们可以选择一个非常无信息的先验,以免使过程产生偏差。例如,我们可以定义平均高度 μ \mu μ 介于 1.65 m 1.65 m 1.65m 1.8 m 1.8 m 1.8m 之间。如果我们想要一个无信息的先验,我们可以说 μ \mu μ 沿着该区间均匀分布。相反,如果我们认为平均高度在某种程度上偏向于更接近 1.65 m 1.65 m 1.65m 而不是 1.8 m 1.8 m 1.8m 的值,我们可以定义 μ \mu μ 服从 beta 分布,由“超”参数 α \alpha α 定义和 β \beta β。我们可以看看下面这些选项:

import scipy.stats as sts
import numpy as np
import matplotlib.pyplot as pltmu = np.linspace(1.65, 1.8, num = 50)
test = np.linspace(0, 2)
uniform_dist = sts.uniform.pdf(mu) + 1 
uniform_dist = uniform_dist/uniform_dist.sum() 
beta_dist = sts.beta.pdf(mu, 2, 5, loc = 1.65, scale = 0.2) 
beta_dist = beta_dist/beta_dist.sum()
plt.plot(mu, beta_dist, label = 'Beta Dist')
plt.plot(mu, uniform_dist, label = 'Uniform Dist')
plt.xlabel("Value of $\mu$ in meters")
plt.ylabel("Probability density")
plt.legend()

请注意 y 轴如何为我们提供“概率密度”,即我们认为真正的 μ \mu μ x x x 轴上的概率密度。另外,请注意,β 分布和均匀分布会导致我们对 μ \mu μ 的值可能得出的不同结论。如果我们选择均匀分布,我们就表示我们不倾向于判断 μ \mu μ 是否接近我们范围内的任何值,我们只是认为它位于其中的某个位置。如果我们选择 beta 分布,我们相当确定 μ \mu μ 的“真实”值介于 1.68 m 1.68 m 1.68m 1.72 m 1.72 m 1.72m 之间,如蓝线峰值所示。

请注意,我们正在讨论 μ \mu μ 的先验,但我们的模型实际上有两个参数: N ( μ , σ ) N (\mu, \sigma) N(μ,σ)。一般来说,我们也可以定义 σ \sigma σ 上的先验。然而,如果我们对 σ \sigma σ 的猜测感到幸运,或者如果我们想为了示例而简化过程,我们可以将 σ \sigma σ 设置为固定值,例如 0.1 m 0.1 m 0.1m

似然表示为 P ( P ( P( Data ∣ θ ) \mid \theta) θ)。在这种情况下,“数据”将是高度的观测值。假设我们要测量一名随机挑选的学生,他们的身高为 1.7m。考虑到有了这个数据,我们现在可以了解 θ \theta θ 的每个选项有多好。我们通过以下问题来做到这一点:如果 θ \theta θ 的一个特定选项(称为 θ 1 \theta 1 θ1)是真实的,那么我们观察到 1.7 m 1.7 m 1.7m 高度的“可能性”有多大? θ 2 \theta 2 θ2 怎么样:如果 θ 2 \theta 2 θ2 是“正确”模型,观察到 1.7 m 1.7 m 1.7m 高度的可能性有多大?

然而,就我们目前的目的而言,我们正在改变分布/模型本身。这意味着我们的 x x x 轴实际上将具有变量 μ \mu μ 的不同可能性,而我们的 y y y 轴将具有每种可能性的概率密度。看看下面的代码,它代表了我们的似然函数及其可视化:

def likelihood_func(datum, mu):likelihood_out = sts.norm.pdf(datum, mu, scale = 0.1) return likelihood_out/likelihood_out.sum()likelihood_out = likelihood_func(1.7, mu)plt.plot(mu, likelihood_out)
plt.title("Likelihood of $\mu$ given observation 1.7m")
plt.ylabel("Probability Density/Likelihood")
plt.xlabel("Value of $\mu$")
plt.show()

一些统计学家将 P ( P ( P( Data ) ) ) 称为“证据”。这个变量的含义非常简单:它是产生价值数据的概率。然而,这很难直接计算。值得庆幸的是,我们有一个好办法。考虑以下方程:
∫ P ( Data  ∣ θ ) ∗ P ( θ ) d θ = P ( Data  ) \int P(\text { Data } \mid \theta) * P(\theta) d \theta=P(\text { Data }) P( Data θ)P(θ)dθ=P( Data )
贝叶斯定理的右侧 P ( θ ∣ P (\theta \mid P(θ Data) 称为“后验”。这是我们对数据如何分布的后验理解,因为我们目睹了数据,并且我们有先验知识。我们如何得到后验呢?回到方程:
P ( θ ∣ Data  ) = P ( Data  ∣ θ ) ∗ P ( θ ) P ( Data  ) P(\theta \mid \text { Data })=\frac{P(\text { Data } \mid \theta) * P(\theta)}{P(\text { Data })} P(θ Data )=P( Data )P( Data θ)P(θ)
那么,第一步是将似然度 (P(Data ∣ θ ) ) \mid \theta)) θ)) 与先验 ( P ( θ ) ) ( P (\theta)) (P(θ)) 相乘:

import scipy as spunnormalized_posterior = likelihood_out * uniform_dist
plt.plot(mu, unnormalized_posterior)
plt.xlabel("$\mu$ in meters")
plt.ylabel("Unnormalized Posterior")
plt.show()

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python高层解雇和客户活跃度量化不确定性模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015709

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数