代码随想录算法训练营Day22|235.二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点

本文主要是介绍代码随想录算法训练营Day22|235.二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二叉搜索树的最近公共祖先

不考虑二叉搜索树这一条件的话,普通的二叉搜索树搜索最近的公共祖先就是昨日的做法,这种做法也能解决二叉搜索树的最近公共祖先。

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {// 如果当前节点为空,或者等于p或q,直接返回当前节点if (root == nullptr || root == p || root == q) {return root;}// 在左右子树中递归寻找p和qTreeNode* left = lowestCommonAncestor(root->left, p, q);TreeNode* right = lowestCommonAncestor(root->right, p, q);// 如果左右子树的返回值都不为空,说明当前节点就是最近公共祖先if (left != nullptr && right != nullptr) {return root;}// 否则,返回非空的子树返回值return left != nullptr ? left : right;}
};

没有用上二叉搜索树这一条件,但也能解题,但效率较低。

针对二叉搜索树,我们之前有做过,当对二叉搜索树进行中序编历时,结果是一个递增的数组。即公共祖先,val值必定处于p和q之间。

当从根节点向下遍历的过程中,如果遇到节点val值位于p和q之间,那么就寻找到了最近的公共祖先。具体参考代码随想录B站视频。

二叉搜索树找祖先就有点不一样了!| 235. 二叉搜索树的最近公共祖先_哔哩哔哩_bilibiliicon-default.png?t=N7T8https://www.bilibili.com/video/BV1Zt4y1F7ww/?spm_id_from=333.788&vd_source=fc4a6e70e3a87b7ea67c2024e326e7c5从上到下遍历,考虑层序遍历的方式,具体代码如下:

class Solution {
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {queue<TreeNode*>queue;if(root == nullptr){return nullptr;}queue.push(root);TreeNode*cur = root;int min = p->val>q->val?q->val:p->val;//找到p,q中val的较小值int max = p->val<q->val?q->val:p->val;//找到p,q中val的较大值while(!queue.empty()){//层序遍历过程int level_size = queue.size();for(int i = 0; i <level_size; i ++){cur = queue.front();queue.pop();if(cur->val<=max and cur->val>=min){return cur;}//找到节点属于p,q间则返回if(cur->left)queue.push(cur->left);if(cur->right)queue.push(cur->right);} }return nullptr;}
};

算法的时间复杂度和空间复杂度均为O(n)。

前序递归,中左右,参考代码随想录

代码随想录 (programmercarl.com)icon-default.png?t=N7T8https://programmercarl.com/0235.%E4%BA%8C%E5%8F%89%E6%90%9C%E7%B4%A2%E6%A0%91%E7%9A%84%E6%9C%80%E8%BF%91%E5%85%AC%E5%85%B1%E7%A5%96%E5%85%88.html#%E6%80%9D%E8%B7%AF

class Solution {
private:TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q) {if (cur == NULL) return cur;// 中if (cur->val > p->val && cur->val > q->val) {   // 左TreeNode* left = traversal(cur->left, p, q);if (left != NULL) {return left;}}if (cur->val < p->val && cur->val < q->val) {   // 右TreeNode* right = traversal(cur->right, p, q);if (right != NULL) {return right;}}return cur;}
public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {return traversal(root, p, q);}
};

二叉搜索树中的插入操作

由于树中的节点值是独一无二的,在二叉搜索树中寻找值应插入的节点的父节点位置,然后创建一个新节点并将其插入即可。

代码整体如下

class Solution {
public:// 在二叉搜索树中查找适合插入新节点的位置,并返回该位置的父节点TreeNode* findBST(TreeNode* root, int val) {// 如果当前节点为空,返回nullptr,表示没有找到合适的插入位置if (root == nullptr) return nullptr;// 如果val小于当前节点的值,应该在左子树中继续查找if (val < root->val) {// 如果左子节点为空,当前位置就是适合插入新节点的位置if (root->left == nullptr) return root;// 否则,在左子树中继续查找return findBST(root->left, val);} else {// 如果val大于或等于当前节点的值,应该在右子树中继续查找// 如果右子节点为空,当前位置就是适合插入新节点的位置if (root->right == nullptr) return root;// 否则,在右子树中继续查找return findBST(root->right, val);}}// 在二叉搜索树中插入一个新的节点TreeNode* insertIntoBST(TreeNode* root, int val) {// 创建新节点TreeNode* newnode = new TreeNode(val);// 如果树为空,新节点即为根节点if (root == nullptr) {return newnode;}// 查找适合插入新节点的位置,并得到该位置的父节点TreeNode* parent = findBST(root, val);// 根据val的值决定新节点是作为左子节点还是右子节点if (val < parent->val) {parent->left = newnode;} else {parent->right = newnode;}// 返回根节点return root;}
};

算法的时间复杂度为O(logn)(二叉搜索树,最差为O(n)),空间复杂度为O(1)。

删除二叉搜索树中的节点

有五种情况

1.未找到需要删除的节点

2.删除的是叶节点

3.删除的节点仅有右子树

4.删除的节点仅有左子树

5.删除的节点左右子树都在

针对这五种情况,有以下五种解答方案

1.直接返回二叉搜索树的根节点

2.直接删除即可

3.将右孩子代替被删除的节点

4.将左孩子代替被删除的节点

5.有两种解决方式,分别是让被删除节点的右孩子或左孩子即位,以右孩子即位,查找右子树下的最小值节点,将节点的左子树全部接入该节点,或以左孩子即位,查找左子树下的最大值节点,将节点的右子树全部接入该节点。

class Solution {
public:TreeNode* find_parent(TreeNode* root, int key) {if (root == nullptr || (root->left == nullptr && root->right == nullptr)) {return nullptr; // 如果当前节点为空或为叶节点,返回nullptr}if (root->left != nullptr && root->left->val == key) {return root; // 如果左子节点的值等于key,返回当前节点作为父节点}if (root->right != nullptr && root->right->val == key) {return root; // 如果右子节点的值等于key,返回当前节点作为父节点}if (key < root->val) {return find_parent(root->left, key); // 如果key小于当前节点的值,递归地在左子树中查找} else {return find_parent(root->right, key); // 如果key大于或等于当前节点的值,递归地在右子树中查找}}TreeNode* deleteNode(TreeNode* root, int key) {if (root == nullptr) return nullptr;if (root->val == key) {// 要删除的节点是根节点if (root->left == nullptr) return root->right; // 只有右子树if (root->right == nullptr) return root->left; // 只有左子树// 有两个子节点,找到右子树的最小节点TreeNode* minNode = getMin(root->right);root->val = minNode->val; // 将右子树的最小节点的值赋给当前节点root->right = deleteNode(root->right, minNode->val); // 删除右子树中的最小节点} else if (key < root->val) {root->left = deleteNode(root->left, key); // 在左子树中递归删除} else {root->right = deleteNode(root->right, key); // 在右子树中递归删除}return root;}TreeNode* getMin(TreeNode* node) {while (node->left != nullptr) node = node->left;return node;}
};

算法的时间复杂度需要考虑树的高度,查找树中要删除的节点,需要O(logn)的时间,当需要删除的节点有两个子节点时,需要找到右子树中的最小节点,这同样需要O(logn)的时间,最坏情况下时间复杂度为O(logn)。

空间复杂度主要取决于递归栈的深度,因此,空间复杂度也为O(logn)。

这篇关于代码随想录算法训练营Day22|235.二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015681

相关文章

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061