python 学习笔记2 --画图(networkx)

2024-05-30 03:38

本文主要是介绍python 学习笔记2 --画图(networkx),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

绘制基本网络图

用matplotlib绘制网络图
基本流程:
1. 导入networkx,matplotlib包
2. 建立网络
3. 绘制网络 nx.draw()
4. 建立布局 pos = nx.spring_layout美化作用
最基本画图程序

import import networkx as nx             #导入networkx包
import matplotlib.pyplot as plt 
G = nx.random_graphs.barabasi_albert_graph(100,1)   #生成一个BA无标度网络G
nx.draw(G)                               #绘制网络G
plt.savefig("ba.png")           #输出方式1: 将图像存为一个png格式的图片文件
plt.show()                            #输出方式2: 在窗口中显示这幅图像 

networkx 提供画图的函数有:

  1. draw(G,[pos,ax,hold])
  2. draw_networkx(G,[pos,with_labels])
  3. draw_networkx_nodes(G,pos,[nodelist]) 绘制网络G的节点图
  4. draw_networkx_edges(G,pos[edgelist]) 绘制网络G的边图
  5. draw_networkx_edge_labels(G, pos[, ...]) 绘制网络G的边图,边有label
    ---有layout 布局画图函数的分界线---
  6. draw_circular(G, **kwargs) Draw the graph G with a circular layout.
  7. draw_random(G, **kwargs) Draw the graph G with a random layout.
  8. draw_spectral(G, **kwargs) Draw the graph G with a spectral layout.
  9. draw_spring(G, **kwargs) Draw the graph G with a spring layout.
  10. draw_shell(G, **kwargs) Draw networkx graph with shell layout.
  11. draw_graphviz(G[, prog]) Draw networkx graph with graphviz layout.

networkx 画图参数:
node_size: 指定节点的尺寸大小(默认是300,单位未知,就是上图中那么大的点)
node_color: 指定节点的颜色 (默认是红色,可以用字符串简单标识颜色,例如'r'为红色,'b'为绿色等,具体可查看手册),用“数据字典”赋值的时候必须对字典取值(.values())后再赋值
node_shape: 节点的形状(默认是圆形,用字符串'o'标识,具体可查看手册)
alpha: 透明度 (默认是1.0,不透明,0为完全透明)
width: 边的宽度 (默认为1.0)
edge_color: 边的颜色(默认为黑色)
style: 边的样式(默认为实现,可选: solid|dashed|dotted,dashdot)
with_labels: 节点是否带标签(默认为True)
font_size: 节点标签字体大小 (默认为12)
font_color: 节点标签字体颜色(默认为黑色)
e.g. nx.draw(G,node_size = 30, with_label = False)
绘制节点的尺寸为30,不带标签的网络图。


布局指定节点排列形式

pos = nx.spring_layout

建立布局,对图进行布局美化,networkx 提供的布局方式有:
- circular_layout:节点在一个圆环上均匀分布
- random_layout:节点随机分布
- shell_layout:节点在同心圆上分布
- spring_layout: 用Fruchterman-Reingold算法排列节点(这个算法我不了解,样子类似多中心放射状)
- spectral_layout:根据图的拉普拉斯特征向量排列节
布局也可用pos参数指定,例如,nx.draw(G, pos = spring_layout(G)) 这样指定了networkx上以中心放射状分布.

绘制划分后的社区

先看一段代码,代码源自site

partition = community.best_partition(User)
size = float(len(set(partition.values())))
pos = nx.spring_layout(G)
count = 0.for com in set(partition.values()) :count = count + 1.list_nodes = [nodes for nodes in partition.keys()if partition[nodes] == com]                 nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 50,node_color = str(count / size))nx.draw_networkx_edges(User,pos,with_labels = True, alpha=0.5 )
plt.show()

communit.best_partition 是社区划分方法,算法是根据Vincent D.Blondel 等人于2008提出,是基于modularity optimization的heuristic方法.
partition的结果存在字典数据类型:
{'1': 0, '3': 1, '2': 0, '5': 1, '4': 0, '6': 0}
单引号里的数据是key,也就是网络中节点编号。
冒号后面的数值,表示网络中节点的编号属于哪个社区。也就是社区标号。如'6': 0表示6节点属于0社区

 list_nodes = [nodes for nodes in partition.keys()if partition[nodes] == com] 

每次循环list_nodes结果是社区i对应的用户编号。
如第一次循环结果是com = 0, list_nodes= ['1','2','4','6']
第二次循环的结果是com = 1, list_nodes = ['3','6']
这样每次循环,画出一个社区的所有节点:

 nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 50,node_color = str(count / size))

循环结束后通过颜色来标识不同社区

  • 2014年06月01日发布

这篇关于python 学习笔记2 --画图(networkx)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015474

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: