python 学习笔记2 --画图(networkx)

2024-05-30 03:38

本文主要是介绍python 学习笔记2 --画图(networkx),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

绘制基本网络图

用matplotlib绘制网络图
基本流程:
1. 导入networkx,matplotlib包
2. 建立网络
3. 绘制网络 nx.draw()
4. 建立布局 pos = nx.spring_layout美化作用
最基本画图程序

import import networkx as nx             #导入networkx包
import matplotlib.pyplot as plt 
G = nx.random_graphs.barabasi_albert_graph(100,1)   #生成一个BA无标度网络G
nx.draw(G)                               #绘制网络G
plt.savefig("ba.png")           #输出方式1: 将图像存为一个png格式的图片文件
plt.show()                            #输出方式2: 在窗口中显示这幅图像 

networkx 提供画图的函数有:

  1. draw(G,[pos,ax,hold])
  2. draw_networkx(G,[pos,with_labels])
  3. draw_networkx_nodes(G,pos,[nodelist]) 绘制网络G的节点图
  4. draw_networkx_edges(G,pos[edgelist]) 绘制网络G的边图
  5. draw_networkx_edge_labels(G, pos[, ...]) 绘制网络G的边图,边有label
    ---有layout 布局画图函数的分界线---
  6. draw_circular(G, **kwargs) Draw the graph G with a circular layout.
  7. draw_random(G, **kwargs) Draw the graph G with a random layout.
  8. draw_spectral(G, **kwargs) Draw the graph G with a spectral layout.
  9. draw_spring(G, **kwargs) Draw the graph G with a spring layout.
  10. draw_shell(G, **kwargs) Draw networkx graph with shell layout.
  11. draw_graphviz(G[, prog]) Draw networkx graph with graphviz layout.

networkx 画图参数:
node_size: 指定节点的尺寸大小(默认是300,单位未知,就是上图中那么大的点)
node_color: 指定节点的颜色 (默认是红色,可以用字符串简单标识颜色,例如'r'为红色,'b'为绿色等,具体可查看手册),用“数据字典”赋值的时候必须对字典取值(.values())后再赋值
node_shape: 节点的形状(默认是圆形,用字符串'o'标识,具体可查看手册)
alpha: 透明度 (默认是1.0,不透明,0为完全透明)
width: 边的宽度 (默认为1.0)
edge_color: 边的颜色(默认为黑色)
style: 边的样式(默认为实现,可选: solid|dashed|dotted,dashdot)
with_labels: 节点是否带标签(默认为True)
font_size: 节点标签字体大小 (默认为12)
font_color: 节点标签字体颜色(默认为黑色)
e.g. nx.draw(G,node_size = 30, with_label = False)
绘制节点的尺寸为30,不带标签的网络图。


布局指定节点排列形式

pos = nx.spring_layout

建立布局,对图进行布局美化,networkx 提供的布局方式有:
- circular_layout:节点在一个圆环上均匀分布
- random_layout:节点随机分布
- shell_layout:节点在同心圆上分布
- spring_layout: 用Fruchterman-Reingold算法排列节点(这个算法我不了解,样子类似多中心放射状)
- spectral_layout:根据图的拉普拉斯特征向量排列节
布局也可用pos参数指定,例如,nx.draw(G, pos = spring_layout(G)) 这样指定了networkx上以中心放射状分布.

绘制划分后的社区

先看一段代码,代码源自site

partition = community.best_partition(User)
size = float(len(set(partition.values())))
pos = nx.spring_layout(G)
count = 0.for com in set(partition.values()) :count = count + 1.list_nodes = [nodes for nodes in partition.keys()if partition[nodes] == com]                 nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 50,node_color = str(count / size))nx.draw_networkx_edges(User,pos,with_labels = True, alpha=0.5 )
plt.show()

communit.best_partition 是社区划分方法,算法是根据Vincent D.Blondel 等人于2008提出,是基于modularity optimization的heuristic方法.
partition的结果存在字典数据类型:
{'1': 0, '3': 1, '2': 0, '5': 1, '4': 0, '6': 0}
单引号里的数据是key,也就是网络中节点编号。
冒号后面的数值,表示网络中节点的编号属于哪个社区。也就是社区标号。如'6': 0表示6节点属于0社区

 list_nodes = [nodes for nodes in partition.keys()if partition[nodes] == com] 

每次循环list_nodes结果是社区i对应的用户编号。
如第一次循环结果是com = 0, list_nodes= ['1','2','4','6']
第二次循环的结果是com = 1, list_nodes = ['3','6']
这样每次循环,画出一个社区的所有节点:

 nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 50,node_color = str(count / size))

循环结束后通过颜色来标识不同社区

  • 2014年06月01日发布

这篇关于python 学习笔记2 --画图(networkx)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015474

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.