NumPy 泊松分布模拟与 Seaborn 可视化技巧

2024-05-29 21:36

本文主要是介绍NumPy 泊松分布模拟与 Seaborn 可视化技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泊松分布

简介

泊松分布是一种离散概率分布,用于描述在给定时间间隔内随机事件发生的次数。它常用于模拟诸如客户到达商店、电话呼叫接入中心等事件。

参数

泊松分布用一个参数来定义:

λ:事件发生的平均速率,表示在单位时间内事件发生的平均次数。

公式

泊松分布的概率质量函数 (PMF) 给出了在指定时间间隔内发生 k 次事件的概率,计算公式为:

P(k) = e^(-λ) (λ^k) / k!

其中:

e^(-λ):表示没有事件发生的概率。
(λ^k):表示 k 次事件发生的概率。
k!:表示 k 个元素的阶乘,即 k × (k - 1) × (k - 2) × … × 2 × 1。

生成泊松分布数据

NumPy 提供了 random.poisson() 函数来生成服从泊松分布的随机数。该函数接受以下参数:

lam:事件发生的平均速率。
size:输出数组的形状。

示例:生成一个平均速率为 5 的事件在 10 个时间间隔内发生的次数:

import numpy as npdata = np.random.poisson(lam=5, size=10)
print(data)

可视化泊松分布

Seaborn 库提供了便捷的函数来可视化分布,包括泊松分布。

示例:绘制平均速率为 7 的事件在 1000 个时间间隔内发生的次数分布:

import seaborn as sns
import numpy as npdata = np.random.poisson(lam=7, size=1000)
sns.distplot(data)
plt.show()

正态分布与泊松分布的关系

当事件发生的平均速率 λ 很大时,泊松分布可以近似为正态分布。其均值 μ 为 λ,标准差 σ 为 sqrt(λ)。

示例:比较泊松分布和正态分布的形状:

import seaborn as sns
import numpy as nplam = 50# 生成泊松分布数据
data_poisson = np.random.poisson(lam=lam, size=1000)# 生成正态分布数据
mu = lam
sigma = np.sqrt(lam)
data_normal = np.random.normal(loc=mu, scale=sigma, size=1000)sns.distplot(data_poisson, label="Poisson")
sns.distplot(data_normal, label="Normal")
plt.legend()
plt.show()

练习

  1. 在一个小时内,一家商店平均收到 10 位顾客。模拟顾客到达商店的次数并绘制分布图。
  2. 比较不同平均速率下泊松分布形状的变化。
  3. 利用泊松分布来模拟一个呼叫中心每天接到的电话呼叫数量,并计算平均呼叫量和每天接听超过 30 个电话的概率。

解决方案

import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt# 1. 模拟顾客到达商店的次数并绘制分布图
data = np.random.poisson(lam=10, size=1000)
sns.distplot(data)
plt.show()# 2. 比较不同平均速率下泊松分布形状的变化
lam_values = [5, 10, 20, 50]
for lam in lam_values:data = np.random.poisson(lam=lam, size=1000)sns.distplot(data, label=f"λ={lam}")
plt.legend()
plt.show()# 3. 模拟电话呼叫数量并计算平均呼叫量和每天接听超过 30 个电话的概率
calls_per_day = np.random.poisson(lam=150, size=365)
print("平均呼叫量:", calls_per_day.mean())
print("每天接听超过 30 个电话的概率:", (calls_per_day > 30).mean())

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

这篇关于NumPy 泊松分布模拟与 Seaborn 可视化技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014707

相关文章

90%的人第一步就错了! 顺利登录wifi路由器后台的技巧

《90%的人第一步就错了!顺利登录wifi路由器后台的技巧》登录Wi-Fi路由器,其实就是进入它的后台管理页面,很多朋友不知道该怎么进入路由器后台设置,感兴趣的朋友可以花3分钟了解一下... 你是不是也遇到过这种情况:家里网速突然变慢、想改WiFi密码却不知道从哪进路由器、新装宽带后完全不知道怎么设置?别慌

Java 单元测试之Mockito 模拟静态方法与私有方法最佳实践

《Java单元测试之Mockito模拟静态方法与私有方法最佳实践》本文将深入探讨如何使用Mockito来模拟静态方法和私有方法,结合大量实战代码示例,带你突破传统单元测试的边界,写出更彻底、更独立... 目录Mockito 简介:为什么选择它?环境准备模拟静态方法:打破“不可变”的枷锁传统困境解法一:使用M

录音功能在哪里? 电脑手机等设备打开录音功能的技巧

《录音功能在哪里?电脑手机等设备打开录音功能的技巧》很多时候我们需要使用录音功能,电脑和手机这些常用设备怎么使用录音功能呢?下面我们就来看看详细的教程... 我们在会议讨论、采访记录、课堂学习、灵感创作、法律取证、重要对话时,都可能有录音需求,便于留存关键信息。下面分享一下如何在电脑端和手机端上找到录音功能

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热