计算机图形学入门03:二维基本变换

2024-05-29 20:20

本文主要是介绍计算机图形学入门03:二维基本变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        变换(Transformation)可分为模型(Model)变换和视图(Viewing)变换。在3D虚拟场景中相机的移动和旋转,角色人物动画都需要变换,用来描述物体运动。将三维世界投影变换到2D屏幕上成像出来,也需要变换。

 1.缩放变换

        如上图所示,把一个图形缩小为原来的0.5倍,那么就需要x坐标变为0.5倍,y坐标也变为0.5倍,这样的变换叫做缩放(Scale)变换。可以用以下表达式表示:

        可以用矩阵的形式表示如下:

        上面的矩阵表达式针对x轴和y轴进行相同比例的缩放,实际中两个方向上的缩放可能不相同,把矩阵表达式修改如下:

        Sx表示在x轴方向上缩放的倍数,Sy表示在y轴方向上缩放的倍数。

2.反射变换

        反射(Reflection)变换也可称为镜像变换,如下图所示:

        如上图需要将物体以y轴进行镜像,那么可以用以下表达式表达:

        用矩阵形式的表达如下:

        当然还有其他方向的反射矩阵。

3.切变变换

        如上图这个变换好像是拽着图形的右上角沿着x轴向右拉了一段距离,称为切变(Shear)变换

        提示:

        1.y=0时,水平位移为0

        2.y=1时,水平位移为a(当y=0.5时,水平位移是0.5a,即y*a)

        3.垂直位移总是0

        通过以上三个提示的规律可得出任何x轴上的位移为a*y,表示移动距离等于原本x位置加上a*y,即x’=x+a*y,而y轴的值始终不变,即y’=y。用矩阵表达为如下:

4.旋转变换

        说旋转(Rotation),默认指的是绕原点(0,0)逆时针旋转,下图是物体绕原点逆时针旋转θ角的示意图:

        以上变换同样可以写成矩阵的形式:

推导如下

        1.首先确认要达到的目标位置(x’,y’),假设原点(x,y)。

        2.用矩阵形式表示:

        如此需要求得a,b,c,d四个未知数。

        3.所有旋转的点都要符合最终公式,包括特殊点。先找出特殊点A(1,0),将A点旋转\theta度,通过三角定律可得A的坐标变成(\sin \theta\cos \theta),假设当前就是以A点为原始点,进行了\theta度的旋转。那么带入后矩阵表示:\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}=\begin{bmatrix} a & b\\ c& d \end{bmatrix}\begin{bmatrix} 1\\ 0 \end{bmatrix}。通过矩阵相乘可得:cos\theta=a*1+b*0,sin\theta=c*1+d*0,所以a=cos\theta,c=sin\theta

        4.同理使用B(0,1)这个特殊点旋转\theta度,求得b=-sin\theta,d=cos\theta

5.线性变换

        前面提到的变换都可以使用以下表达式表示:

        用矩阵都可以如下表示:

        继而表示为:输出坐标 = 变换矩阵 × 输入坐标 的形式:

        满足以上条件的变换称为线性(Linear)变换

5.齐次坐标

5.1仿射变换

        如上图所示,沿x轴平移tx,沿y轴平移ty,这样是一个平移变换。可以用以下表达式表示:

       你会发现,它无法用前面熟悉的线性变换矩阵的形式表示,也就是说平移变换是非线性变换。 只能用以下矩阵形式表示,上面把这种变换称为非线性变换,其实它有专门的名字叫仿射(Affine)变换。

        为了方便统一,不希望平移变换是一个特例,那么是否有一个统一的方式来表示所有的变换?通过不断探索,引入了齐次坐标(Homogeneous coordinates)

5.2什么是齐次坐标

        我们可以在现在二维上,再增加一个维度,变成三维,在坐标系上添加第三个坐标(W坐标),如果在卡尔坐标系上有点(x,y),当转换为齐次坐标后这个点变为(wx,wy,w)。反过来同样适用,如果在其次坐标系中有一个点(x,y,w),转换到笛卡尔坐标系下,这个点应该表示为(x/w,y/w)。如此,对于任何一个点和任意一个向量,我们都可以表示如下:

       注意:这里为什么点是加1,而向量是加0呢?因为向量是个方向,平移后还是原来的向量,具有平移不变性质。如果有一个向量(x,y,0),同样经过上图矩阵这么一个变换,得到的结果仍然希望是(x,y,0),添加0是为了保护向量在平移变换过程中不发生变化。

将点(x,y)表示成(x,y,1),平移变换可写成如下矩阵形式:

         所以像如下这种仿射变换表达式:

        通过引入齐次坐标后,可以使用线性变换的形式表达(根据上图所示,表示先线性变换再平移变换的)。

        所以就有了统一所有变换的表达式。可以发现最后变换矩阵最后一行都是0,0,1。

6.二维主要变换总结

         引入了齐次坐标后,二维变换表达式分别变成了如下:

        缩放矩阵

        旋转矩阵

        上述旋转矩阵是绕原点逆时针旋转的变换矩阵,当需要得到顺时针旋转的变换矩阵时,可以通过逆变换(后面内容)得到,即

        通过上面两个矩阵对比发现,在旋转矩阵里面,旋转矩阵的逆就是旋转矩阵的转置。利用这个性质,求旋转的逆,也就是求反方向旋转相同角度的时候,只要写出正向旋转矩阵,把矩阵转置过来就可以了。

        如果一个矩阵的转置等于这个矩阵的逆,我们称这个矩阵是正交矩阵。

        平移矩阵

        注意:一般二维变换下,除了平移矩阵,都用2*2的矩阵表示。

7.逆变换

        一个物体做一个变换,变换完以后要恢复到原来的位置,变换回原来的位置的过程称为逆(Inverse)变换,逆变换在数学上的实现是乘以变换矩阵的逆矩阵。

8.组合变换

        组合(Composite)变换就是对一个物体进行多个变换。如下图所示,左边图片通过某些变换后变成右边的图片。

可以有两种变换:

        1.先向右平移1个单位,再旋转45度(默认都是绕原点、逆时针旋转)。

        2.先旋转45度,后向右平移1个单位。

        发现第一种变换方式并没有达到想要的效果,而第二种方式达到了目的。

得出两个结论:

        1.一个复杂的变换,可以通过几个简单的变换得到。

        2.变换的顺利不同最终的结果也会不同,因为矩阵相乘是不满足交换律的,矩阵相乘顺序不同结果就会不同(特殊除外)。

注意:矩阵的应用是从右到左的,将上述组合变换用矩阵表达如下(先旋转,再平移):

组合变换矩阵相乘应用的顺序

        上图中A1,A2一直到An表示变换矩阵,一个点进行组合变换时,应用在该点的矩阵是从右到左。即矩阵An乘An-1一直乘到A1,实际应用到点的顺序是A1,A2一直到An。

矩阵乘法结合律使用

        矩阵相乘无法使用交换律,但是可以使用结合律。

        一个点做多个变换即多个矩阵相乘再乘以这个点,根据矩阵乘法结合律,可以先把这些矩阵相乘,乘完在与这个点相乘,只要保证矩阵相乘的顺序不变即可。假设A1到An都为3*3的矩阵,那么相乘的结果还是3*3的一个矩阵,那么就可以把很多个矩阵合成一个矩阵,简化了公式。

        所以上述例子的表达式可以简化为:

        同理,矩阵不仅能合成,还能够分解。前面最开始图就是把变换分解成了旋转变换和平移变换。

9.非原点的旋转变换

        在上述中,默认旋转变换是绕原点进行的,那么不是绕原点的变换该怎么实现呢?可以先把变换分解,分为三个步骤变换:

        1.将旋转中心移动到原点(所有点移动)

        2.在原点做旋转变换

        3.平移到原点的位置

        综上得出结论,先平移T(-c)到原点,然后旋转R(α),最后平移到原来位置T(c)。矩阵变换作用在物体上的顺序是从右到左,所以矩阵表达式表示:

这篇关于计算机图形学入门03:二维基本变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014548

相关文章

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

DNS查询的利器! linux的dig命令基本用法详解

《DNS查询的利器!linux的dig命令基本用法详解》dig命令可以查询各种类型DNS记录信息,下面我们将通过实际示例和dig命令常用参数来详细说明如何使用dig实用程序... dig(Domain Information Groper)是一款功能强大的 linux 命令行实用程序,通过查询名称服务器并输

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

从入门到精通详解LangChain加载HTML内容的全攻略

《从入门到精通详解LangChain加载HTML内容的全攻略》这篇文章主要为大家详细介绍了如何用LangChain优雅地处理HTML内容,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录引言:当大语言模型遇见html一、HTML加载器为什么需要专门的HTML加载器核心加载器对比表二

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

C#连接SQL server数据库命令的基本步骤

《C#连接SQLserver数据库命令的基本步骤》文章讲解了连接SQLServer数据库的步骤,包括引入命名空间、构建连接字符串、使用SqlConnection和SqlCommand执行SQL操作,... 目录建议配合使用:如何下载和安装SQL server数据库-CSDN博客1. 引入必要的命名空间2.

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态