SMS垃圾短信集F1指标分析

2024-05-29 18:12
文章标签 分析 指标 f1 垃圾 短信 sms

本文主要是介绍SMS垃圾短信集F1指标分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、任务

SMS垃圾短信集是一组为研究SMS垃圾短信而收集数据集合,每条短信有两个信息,分别是标签信息label,其中spam为垃圾短信,ham为正常短信。以及message信息为短信内容。现在有训练集,训练集保存在E:\自然语言处理\train.csv和测试集,测试集保存在E:\自然语言处理\test.csv。现在综合利用所学的文本预处理、特征提取、文本向量化等技术对其进行分析。建立机器学习模型,计算测试集上的F1指标,希望F1指标达到非常好的效果。

二、代码

使用SVC机器学习模型,Tfidf特征处理。

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import f1_score
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
import re
import string# 1. 数据加载与预处理
train_data = pd.read_csv("E:\\自然语言处理\\train.csv")
test_data = pd.read_csv("E:\\自然语言处理\\test.csv")# 定义文本预处理函数
def preprocess_text(text):# 将文本转换为小写text = text.lower()# 去除标点符号text = text.translate(str.maketrans('', '', string.punctuation))# 去除数字text = re.sub(r'\d+', '', text)# 返回处理后的文本return text# 对训练集和测试集的文本进行预处理
train_data['message'] = train_data['message'].apply(preprocess_text)
test_data['message'] = test_data['message'].apply(preprocess_text)# 2. 特征提取与文本向量化
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(train_data['message'])
X_test = vectorizer.transform(test_data['message'])# 对标签进行编码
label_encoder = LabelEncoder()
y_train = label_encoder.fit_transform(train_data['label'])
y_test = label_encoder.transform(test_data['label'])# 3. 建立机器学习模型
classifier = SVC(kernel='linear')# 4. 模型训练与评估
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)# 计算F1指标
f1 = f1_score(y_test, y_pred)print("F1 Score:", f1)

三、结果

F1 Score: 0.9469214437367303

本代码仅是抛砖引玉,希望诸君可以有其他更好的方法,比如使用GridSearchCV等等。当然我后续会分享其他代码解决上述问题

这篇关于SMS垃圾短信集F1指标分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014270

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原