SMS垃圾短信集F1指标分析

2024-05-29 18:12
文章标签 分析 指标 f1 垃圾 短信 sms

本文主要是介绍SMS垃圾短信集F1指标分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、任务

SMS垃圾短信集是一组为研究SMS垃圾短信而收集数据集合,每条短信有两个信息,分别是标签信息label,其中spam为垃圾短信,ham为正常短信。以及message信息为短信内容。现在有训练集,训练集保存在E:\自然语言处理\train.csv和测试集,测试集保存在E:\自然语言处理\test.csv。现在综合利用所学的文本预处理、特征提取、文本向量化等技术对其进行分析。建立机器学习模型,计算测试集上的F1指标,希望F1指标达到非常好的效果。

二、代码

使用SVC机器学习模型,Tfidf特征处理。

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import f1_score
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
import re
import string# 1. 数据加载与预处理
train_data = pd.read_csv("E:\\自然语言处理\\train.csv")
test_data = pd.read_csv("E:\\自然语言处理\\test.csv")# 定义文本预处理函数
def preprocess_text(text):# 将文本转换为小写text = text.lower()# 去除标点符号text = text.translate(str.maketrans('', '', string.punctuation))# 去除数字text = re.sub(r'\d+', '', text)# 返回处理后的文本return text# 对训练集和测试集的文本进行预处理
train_data['message'] = train_data['message'].apply(preprocess_text)
test_data['message'] = test_data['message'].apply(preprocess_text)# 2. 特征提取与文本向量化
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(train_data['message'])
X_test = vectorizer.transform(test_data['message'])# 对标签进行编码
label_encoder = LabelEncoder()
y_train = label_encoder.fit_transform(train_data['label'])
y_test = label_encoder.transform(test_data['label'])# 3. 建立机器学习模型
classifier = SVC(kernel='linear')# 4. 模型训练与评估
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)# 计算F1指标
f1 = f1_score(y_test, y_pred)print("F1 Score:", f1)

三、结果

F1 Score: 0.9469214437367303

本代码仅是抛砖引玉,希望诸君可以有其他更好的方法,比如使用GridSearchCV等等。当然我后续会分享其他代码解决上述问题

这篇关于SMS垃圾短信集F1指标分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014270

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、