非线性优化:高斯-牛顿法的原理与实现

2024-05-29 15:28

本文主要是介绍非线性优化:高斯-牛顿法的原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

非线性优化:高斯-牛顿法的原理与实现

引言

在实际应用中,很多问题都是非线性的。非线性优化问题广泛应用于机器学习、数据拟合、工程设计等领域。高斯-牛顿法是一种常用于解决非线性最小二乘问题的迭代算法。本文将详细介绍高斯-牛顿法的原理、推导过程,并通过Python代码实现该算法。

高斯-牛顿法原理

问题定义

非线性最小二乘问题可以表示为:
min ⁡ x ∑ i = 1 m [ r i ( x ) ] 2 \min_{\mathbf{x}} \sum_{i=1}^m [r_i(\mathbf{x})]^2 xmini=1m[ri(x)]2
其中, x \mathbf{x} x 是需要优化的参数向量, r i ( x ) r_i(\mathbf{x}) ri(x)是残差函数。

高斯-牛顿法

高斯-牛顿法的基本思想是利用泰勒展开对非线性函数进行线性近似,然后求解线性最小二乘问题。具体步骤如下:

  1. 初始猜测参数 x 0 \mathbf{x}_0 x0
  2. 迭代更新参数 x \mathbf{x} x
    x k + 1 = x k − ( J T J ) − 1 J T r ( x k ) \mathbf{x}_{k+1} = \mathbf{x}_k - (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r}(\mathbf{x}_k) xk+1=xk(JTJ)1JTr(xk)
    其中, J \mathbf{J} J 是残差函数 r ( x ) \mathbf{r}(\mathbf{x}) r(x)对参数 x \mathbf{x} x 的雅可比矩阵。

雅可比矩阵

雅可比矩阵 J \mathbf{J} J 的每个元素定义为:
J i j = ∂ r i ( x ) ∂ x j J_{ij} = \frac{\partial r_i(\mathbf{x})}{\partial x_j} Jij=xjri(x)

Python实现

下面的代码展示了如何使用高斯-牛顿法解决非线性最小二乘问题。

示例问题

我们以一个简单的非线性函数为例:
y = a exp ⁡ ( b x ) + c y = a \exp(b x) + c y=aexp(bx)+c
给定一组数据点 ( x i , y i ) (x_i, y_i) (xi,yi),拟合参数 a , b , c a, b, c a,b,c

代码实现

import numpy as np
import matplotlib.pyplot as pltdef residuals(params, x, y):a, b, c = paramsreturn y - (a * np.exp(b * x) + c)def jacobian(params, x):a, b, c = paramsJ = np.zeros((len(x), len(params)))J[:, 0] = -np.exp(b * x)J[:, 1] = -a * x * np.exp(b * x)J[:, 2] = -1return Jdef gauss_newton(x, y, initial_params, max_iter=100, tol=1e-6):params = np.array(initial_params)for i in range(max_iter):r = residuals(params, x, y)J = jacobian(params, x)delta = np.linalg.inv(J.T @ J) @ J.T @ rparams = params - deltaif np.linalg.norm(delta) < tol:breakreturn params# 生成示例数据
np.random.seed(0)
x = np.linspace(0, 1, 100)
a_true, b_true, c_true = 2, -1, 0.5
y_true = a_true * np.exp(b_true * x) + c_true
y_noisy = y_true + 0.1 * np.random.normal(size=x.size)# 高斯-牛顿法拟合
initial_params = [1, -0.5, 0]
params_estimated = gauss_newton(x, y_noisy, initial_params)# 输出结果
print("Estimated parameters:", params_estimated)
print("True parameters:", [a_true, b_true, c_true])# 可视化拟合结果
y_fitted = params_estimated[0] * np.exp(params_estimated[1] * x) + params_estimated[2]
plt.scatter(x, y_noisy, label='Noisy data')
plt.plot(x, y_true, label='True function', linestyle='--')
plt.plot(x, y_fitted, label='Fitted function', color='red')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Gauss-Newton Method for Nonlinear Least Squares')
plt.show()

代码说明

  1. residuals:计算残差函数 ( r(\mathbf{x}) )。
  2. jacobian:计算雅可比矩阵 ( \mathbf{J} )。
  3. gauss_newton:实现高斯-牛顿法的主函数。该函数迭代更新参数,直到收敛或达到最大迭代次数。
  4. 示例数据生成与拟合:生成示例数据并使用高斯-牛顿法进行拟合,最后可视化结果。

结果展示

运行上述代码,可以得到拟合的参数估计值及其与真实值的比较,并通过图形展示拟合效果。

Estimated parameters: [ 2.00731989 -0.99971756  0.50021009]
True parameters: [2, -1, 0.5]

在这里插入图片描述

从结果可以看出,高斯-牛顿法能够较准确地估计非线性函数的参数。通过可视化图形,可以直观地看到拟合曲线与真实曲线之间的差异。

结论

高斯-牛顿法是一种强大且常用的非线性最小二乘优化方法。在处理非线性问题时,通过迭代更新参数,高斯-牛顿法可以有效地逼近全局最优解。本文介绍了高斯-牛顿法的原理、推导过程,并通过Python代码展示了如何应用该算法解决实际问题。

希望本文能够帮助您理解和应用高斯-牛顿法。如果您有任何问题或建议,欢迎在评论区留言讨论。

这篇关于非线性优化:高斯-牛顿法的原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013911

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集