非线性优化:高斯-牛顿法的原理与实现

2024-05-29 15:28

本文主要是介绍非线性优化:高斯-牛顿法的原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

非线性优化:高斯-牛顿法的原理与实现

引言

在实际应用中,很多问题都是非线性的。非线性优化问题广泛应用于机器学习、数据拟合、工程设计等领域。高斯-牛顿法是一种常用于解决非线性最小二乘问题的迭代算法。本文将详细介绍高斯-牛顿法的原理、推导过程,并通过Python代码实现该算法。

高斯-牛顿法原理

问题定义

非线性最小二乘问题可以表示为:
min ⁡ x ∑ i = 1 m [ r i ( x ) ] 2 \min_{\mathbf{x}} \sum_{i=1}^m [r_i(\mathbf{x})]^2 xmini=1m[ri(x)]2
其中, x \mathbf{x} x 是需要优化的参数向量, r i ( x ) r_i(\mathbf{x}) ri(x)是残差函数。

高斯-牛顿法

高斯-牛顿法的基本思想是利用泰勒展开对非线性函数进行线性近似,然后求解线性最小二乘问题。具体步骤如下:

  1. 初始猜测参数 x 0 \mathbf{x}_0 x0
  2. 迭代更新参数 x \mathbf{x} x
    x k + 1 = x k − ( J T J ) − 1 J T r ( x k ) \mathbf{x}_{k+1} = \mathbf{x}_k - (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r}(\mathbf{x}_k) xk+1=xk(JTJ)1JTr(xk)
    其中, J \mathbf{J} J 是残差函数 r ( x ) \mathbf{r}(\mathbf{x}) r(x)对参数 x \mathbf{x} x 的雅可比矩阵。

雅可比矩阵

雅可比矩阵 J \mathbf{J} J 的每个元素定义为:
J i j = ∂ r i ( x ) ∂ x j J_{ij} = \frac{\partial r_i(\mathbf{x})}{\partial x_j} Jij=xjri(x)

Python实现

下面的代码展示了如何使用高斯-牛顿法解决非线性最小二乘问题。

示例问题

我们以一个简单的非线性函数为例:
y = a exp ⁡ ( b x ) + c y = a \exp(b x) + c y=aexp(bx)+c
给定一组数据点 ( x i , y i ) (x_i, y_i) (xi,yi),拟合参数 a , b , c a, b, c a,b,c

代码实现

import numpy as np
import matplotlib.pyplot as pltdef residuals(params, x, y):a, b, c = paramsreturn y - (a * np.exp(b * x) + c)def jacobian(params, x):a, b, c = paramsJ = np.zeros((len(x), len(params)))J[:, 0] = -np.exp(b * x)J[:, 1] = -a * x * np.exp(b * x)J[:, 2] = -1return Jdef gauss_newton(x, y, initial_params, max_iter=100, tol=1e-6):params = np.array(initial_params)for i in range(max_iter):r = residuals(params, x, y)J = jacobian(params, x)delta = np.linalg.inv(J.T @ J) @ J.T @ rparams = params - deltaif np.linalg.norm(delta) < tol:breakreturn params# 生成示例数据
np.random.seed(0)
x = np.linspace(0, 1, 100)
a_true, b_true, c_true = 2, -1, 0.5
y_true = a_true * np.exp(b_true * x) + c_true
y_noisy = y_true + 0.1 * np.random.normal(size=x.size)# 高斯-牛顿法拟合
initial_params = [1, -0.5, 0]
params_estimated = gauss_newton(x, y_noisy, initial_params)# 输出结果
print("Estimated parameters:", params_estimated)
print("True parameters:", [a_true, b_true, c_true])# 可视化拟合结果
y_fitted = params_estimated[0] * np.exp(params_estimated[1] * x) + params_estimated[2]
plt.scatter(x, y_noisy, label='Noisy data')
plt.plot(x, y_true, label='True function', linestyle='--')
plt.plot(x, y_fitted, label='Fitted function', color='red')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Gauss-Newton Method for Nonlinear Least Squares')
plt.show()

代码说明

  1. residuals:计算残差函数 ( r(\mathbf{x}) )。
  2. jacobian:计算雅可比矩阵 ( \mathbf{J} )。
  3. gauss_newton:实现高斯-牛顿法的主函数。该函数迭代更新参数,直到收敛或达到最大迭代次数。
  4. 示例数据生成与拟合:生成示例数据并使用高斯-牛顿法进行拟合,最后可视化结果。

结果展示

运行上述代码,可以得到拟合的参数估计值及其与真实值的比较,并通过图形展示拟合效果。

Estimated parameters: [ 2.00731989 -0.99971756  0.50021009]
True parameters: [2, -1, 0.5]

在这里插入图片描述

从结果可以看出,高斯-牛顿法能够较准确地估计非线性函数的参数。通过可视化图形,可以直观地看到拟合曲线与真实曲线之间的差异。

结论

高斯-牛顿法是一种强大且常用的非线性最小二乘优化方法。在处理非线性问题时,通过迭代更新参数,高斯-牛顿法可以有效地逼近全局最优解。本文介绍了高斯-牛顿法的原理、推导过程,并通过Python代码展示了如何应用该算法解决实际问题。

希望本文能够帮助您理解和应用高斯-牛顿法。如果您有任何问题或建议,欢迎在评论区留言讨论。

这篇关于非线性优化:高斯-牛顿法的原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013911

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja