基于高光谱数据集的创新点实现-高斯核函数卷积神经网络

2024-05-29 12:28

本文主要是介绍基于高光谱数据集的创新点实现-高斯核函数卷积神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、高光谱数据集简介

1.1 数据集简介

数据集链接在这:高光谱数据集(.mat.csv)-科研学术
数据集包含下面三个文件:
在这里插入图片描述
文件中包含.mat与.csv,145x145x220,
其实主要使用avirissub.csv文件,在代码上只是将mat文件转成了csv文件。具体avirissub.csv如下:145x145x220,每行代表一个数据,每行前220列代表特征,最后一列代表标签值,共17类标签。
在这里插入图片描述

1.2.软件环境与配置:

安装TensorFlow2.12.0版本。指令如下:

 pip install tensorflow==2.12.0

这个版本最关键,其他库,以此安装即可。

二、基线模型实现:

该代码旨在通过构建和训练卷积神经网络(CNN)模型来进行分类任务。下面是代码的详细解释和网络模型结构的说明:

2.1. 环境设置和数据加载

import pandas as pd
from tensorflow import keras
from tensorflow.keras.layers import Dense, Dropout, Conv1D, MaxPooling1D, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras import optimizers
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from keras.utils import np_utils
import scipy.io as sio
import osos.environ["CUDA_VISIBLE_DEVICES"] = "0"
np.random.seed(42)num_epoch = []
result_mean = []
result_std_y = []
result_std_w = []
  • 引入所需库,包括Pandas、TensorFlow、Keras、Scipy等。
  • 设置环境变量以使用指定的GPU设备。
  • 设置随机种子以确保结果可重现。

2.2. 数据加载和预处理

data = sio.loadmat('D:/python_test/data/avirissub.mat')
data_L = sio.loadmat('D:/python_test/data/avirissub_gt.mat')print(sio.whosmat('D:/python_test/data/avirissub.mat'))
print(sio.whosmat('D:/python_test/data/avirissub_gt.mat'))data_D = data['x92AV3C']
data_L = data_L['x92AV3C_gt']data_D_flat = data_D.reshape(-1, data_D.shape[-1])
print(data_D_flat.shape)data_combined = pd.DataFrame(data_D_flat)
data_combined['label'] = data_L.flatten()
data_combined.to_csv('D:/python_test/data/avirissub.csv', index=False, header=False)data = pd.read_csv('D:/python_test/data/avirissub.csv', header=None)
data = data.values
data_D = data[:, :-1]
data_L = data[:, -1]
print(data_D.shape)data_D = data_D / np.max(np.max(data_D))
data_D_F = data_D / np.max(np.max(data_D))data_train, data_test, label_train, label_test = train_test_split(data_D_F, data_L, test_size=0.8, random_state=42, stratify=data_L)data_train = data_train.reshape(data_train.shape[0], data_train.shape[1], 1)
data_test = data_test.reshape(data_test.shape[0], data_test.shape[1], 1)print(np.unique(label_train))label_train = np_utils.to_categorical(label_train,  None)
label_test = np_utils.to_categorical(label_test,  None)
  • 加载数据和标签,查看文件中的键和形状。
  • 数据预处理:将多维数据展平成二维数组,合并数据和标签,保存为CSV文件,并从CSV文件中读取数据。
  • 对特征数据进行归一化。
  • 划分训练集和测试集,并调整数据形状以与Conv1D层兼容。
  • 对标签数据进行独热编码。

2.3. 定义卷积神经网络模型

def CNN(num):result = []num_epoch.append(num)for i in range(3):time_S = time.time()model = Sequential()model.add(Conv1D(filters=6, kernel_size=8, input_shape=inputShape, activation='relu', name='spec_conv1'))model.add(MaxPooling1D(pool_size=2, name='spec_pool1'))model.add(Conv1D(filters=12, kernel_size=7, activation='relu', name='spec_conv2'))model.add(MaxPooling1D(pool_size=2, name='spec_pool2'))model.add(Conv1D(filters=24, kernel_size=8, activation='relu', name='spec_conv3'))model.add(MaxPooling1D(pool_size=2, name='spec_pool3'))model.add(Flatten(name='spe_fla'))model.add(Dense(256, activation='relu', name='spe_De'))model.add(Dense(17, activation='softmax'))adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])filepath = "../model/model_spe(5%).h5"checkpointer = ModelCheckpoint(filepath, monitor='val_acc', save_weights_only=False, mode='max', save_best_only=True, verbose=0)callback = [checkpointer]reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.9, patience=10, verbose=0, mode='auto', epsilon=0.000001, cooldown=0, min_lr=0)history = model.fit(data_train, label_train, epochs=num, batch_size=5, shuffle=True, validation_split=0.1, verbose=0)scores = model.evaluate(data_test, label_test, verbose=0)print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))result.append(scores[1] * 100)time_E = time.time()print("costTime:", time_E - time_S, 's')print(result)result_mean.append(np.mean(result))print("均值是:%.4f" % np.mean(result))result_std_y.append(np.std(result))print("标准差(有偏)是:%.4f" % np.std(result))result_std_w.append(np.std(result, ddof=1))print("标准差(无偏)是:%.4f" % np.std(result, ddof=1))
  • 定义CNN函数,构建并训练卷积神经网络模型。
  • 网络模型结构包括:
    • Conv1D 层:一维卷积层,用于提取特征。共三个卷积层,每层有不同的过滤器数量和卷积核大小。
    • MaxPooling1D 层:最大池化层,用于下采样。每个卷积层后都有一个池化层。
    • Flatten 层:将多维特征图展平成一维。
    • Dense 层:全连接层,包含256个神经元,激活函数为ReLU。
    • 最后一层 Dense 层:输出层,包含17个神经元,对应17个类别,激活函数为Softmax。

2.4. 模型训练和评估

if __name__ == '__main__':CNN(5)
  • 调用CNN函数并设置迭代次数为5。

完整的基线模型版本代码如下

from __future__ import print_function
import pandas as pd
from tensorflow import keras
from tensorflow.keras.layers import Dense, Dropout, Conv1D, MaxPooling1D, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras import optimizers
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from keras.utils import np_utils
import scipy.io as sio
import os# 设置环境变量,指定使用的 GPU 设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"# 设置随机种子以便实验结果可重现
np.random.seed(42)# 初始化存储结果的列表
num_epoch = []
result_mean = []
result_std_y = []
result_std_w = []# 加载数据
data = sio.loadmat('D:/python_test/data/avirissub.mat')  # 加载数据
data_L = sio.loadmat('D:/python_test/data/avirissub_gt.mat')  # 加载标签# 查看.mat文件中包含的键和它们的形状
print(sio.whosmat('D:/python_test/data/avirissub.mat'))
print(sio.whosmat('D:/python_test/data/avirissub_gt.mat'))# 提取数据和标签
data_D = data['x92AV3C']
data_L = data_L['x92AV3C_gt']# 将多维数据展平成二维数组
data_D_flat = data_D.reshape(-1, data_D.shape[-1])
print(data_D_flat.shape)
# 将数据和标签合并
data_combined = pd.DataFrame(data_D_flat)
data_combined['label'] = data_L.flatten()# 保存为.csv文件
data_combined.to_csv('D:/python_test/data/avirissub.csv', index=False, header=False)# 从 CSV 文件中读取数据
data = pd.read_csv('D:/python_test/data/avirissub.csv', header=None)  # 14 类可以用于分类
data = data.values
data_D = data[:, :-1]  # 提取特征 提取了 data 矩阵的所有行和除了最后一列之外的所有列,这就是特征数据。
data_L = data[:, -1]  # 提取标签 提取了 data 矩阵的所有行的最后一列,这就是标签数据
print(data_D.shape)  # 打印特征数据的形状# 对特征数据进行归一化
data_D = data_D / np.max(np.max(data_D))
data_D_F = data_D / np.max(np.max(data_D))# 将数据划分为训练集和测试集
data_train, data_test, label_train, label_test = train_test_split(data_D_F, data_L, test_size=0.8, random_state=42,stratify=data_L)
# 将数据重新调整为与 Conv1D 层兼容的形状
data_train = data_train.reshape(data_train.shape[0], data_train.shape[1], 1)
data_test = data_test.reshape(data_test.shape[0], data_test.shape[1], 1)# 打印标签数据的唯一值,确保它们的范围是正确的
print(np.unique(label_train))# 根据类来自动定义独热编码
label_train = np_utils.to_categorical(label_train,  None)
label_test = np_utils.to_categorical(label_test,  None)inputShape = data_train[0].shape  # 输入形状import timedef CNN(num):result = []num_epoch.append(num)# for i in range(50):for i in range(3):time_S = time.time()model = Sequential()# 定义模型结构model.add(Conv1D(filters=6, kernel_size=8, input_shape=inputShape, activation='relu', name='spec_conv1'))model.add(MaxPooling1D(pool_size=2, name='spec_pool1'))#model.add(Conv1D(filters=12, kernel_size=7, activation='relu', name='spec_conv2'))model.add(MaxPooling1D(pool_size=2, name='spec_pool2'))#model.add(Conv1D(filters=24, kernel_size=8, activation='relu', name='spec_conv3'))model.add(MaxPooling1D(pool_size=2, name='spec_pool3'))# model.add(Conv1D(filters=48, kernel_size=10, activation='relu', name='spec_conv4'))# model.add(MaxPooling1D(pool_size=2, name='spec_pool4'))model.add(Flatten(name='spe_fla'))model.add(Dense(256, activation='relu', name='spe_De'))# model.add(Dropout(0.5,name = 'drop'))model.add(Dense(17, activation='softmax'))# 设置优化器和损失函数,并编译模型adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])filepath = "../model/model_spe(5%).h5"checkpointer = ModelCheckpoint(filepath, monitor='val_acc', save_weights_only=False, mode='max',save_best_only=True, verbose=0)callback = [checkpointer]reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.9, patience=10, verbose=0, mode='auto',epsilon=0.000001,cooldown=0, min_lr=0)# 训练模型并计算评分history = model.fit(data_train, label_train, epochs=num, batch_size=5, shuffle=True, validation_split=0.1,verbose=0)scores = model.evaluate(data_test, label_test, verbose=0)print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))# 保存模型result.append(scores[1] * 100)time_E = time.time()print("costTime:", time_E - time_S, 's')print(result)result_mean.append(np.mean(result))print("均值是:%.4f" % np.mean(result))result_std_y.append(np.std(result))print("标准差(有偏)是:%.4f" % np.std(result))result_std_w.append(np.std(result, ddof=1))print("标准差(无偏)是:%.4f" % np.std(result, ddof=1))if __name__ == '__main__':# 调用 CNN 函数并设置迭代次数为 50# CNN(50)CNN(5)

三、创新点实现:

这段代码在原有基础上引入了一些创新点,主要包括自定义卷积层和自定义回调函数。下面是具体创新点的详细解释:

3.1. 高斯核函数和自定义卷积层

高斯核函数
def gaussian_kernel(x, y, sigma=1.0):return tf.exp(-tf.reduce_sum(tf.square(x - y), axis=-1) / (2 * sigma ** 2))
  • 定义高斯核函数,用于计算输入片段与卷积核之间的相似性。
自定义卷积层
class GaussianKernelConv1D(Layer):def __init__(self, filters, kernel_size, sigma=1.0, **kwargs):super(GaussianKernelConv1D, self).__init__(**kwargs)self.filters = filtersself.kernel_size = kernel_sizeself.sigma = sigmadef build(self, input_shape):self.kernel = self.add_weight(name='kernel',shape=(self.kernel_size, int(input_shape[-1]), self.filters),initializer='uniform',trainable=True)super(GaussianKernelConv1D, self).build(input_shape)def call(self, inputs):output = []for i in range(inputs.shape[1] - self.kernel_size + 1):slice = inputs[:, i:i+self.kernel_size, :]slice = tf.expand_dims(slice, -1)kernel = tf.expand_dims(self.kernel, 0)similarity = gaussian_kernel(slice, kernel, self.sigma)output.append(tf.reduce_sum(similarity, axis=2))return tf.stack(output, axis=1)
  • GaussianKernelConv1D 是一个自定义的一维卷积层,使用高斯核函数来计算相似性。
  • build 方法中定义了卷积核,并设置为可训练参数。
  • call 方法中实现了卷积操作,通过滑动窗口方式计算输入片段和卷积核之间的相似性,并累加这些相似性值。

3.2. 自定义回调函数

自定义回调函数用于在每个 epoch 结束时输出训练信息
class TrainingProgressCallback(Callback):def on_epoch_end(self, epoch, logs=None):logs = logs or {}print(f"Epoch {epoch + 1}/{self.params['epochs']}, Loss: {logs.get('loss')}, Accuracy: {logs.get('accuracy')}, "f"Val Loss: {logs.get('val_loss')}, Val Accuracy: {logs.get('val_accuracy')}")
  • TrainingProgressCallback 是一个自定义回调函数,用于在每个 epoch 结束时输出训练进度,包括损失和准确率。

3.3. 模型构建、训练和评估

CNN 函数
def CNN(num):result = []num_epoch.append(num)for i in range(3):time_S = time.time()model = Sequential()# 定义模型结构model.add(GaussianKernelConv1D(filters=6, kernel_size=8, input_shape=inputShape, name='spec_conv1'))model.add(MaxPooling1D(pool_size=2, name='spec_pool1'))model.add(GaussianKernelConv1D(filters=12, kernel_size=7, name='spec_conv2'))model.add(MaxPooling1D(pool_size=2, name='spec_pool2'))model.add(GaussianKernelConv1D(filters=24, kernel_size=8, name='spec_conv3'))model.add(MaxPooling1D(pool_size=2, name='spec_pool3'))model.add(Flatten(name='spe_fla'))model.add(Dense(256, activation='relu', name='spe_De'))model.add(Dense(17, activation='softmax'))# 设置优化器和损失函数,并编译模型adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])filepath = "../model/model_spe(5%).h5"checkpointer = ModelCheckpoint(filepath, monitor='val_accuracy', save_weights_only=False, mode='max',save_best_only=True, verbose=0)callback = [checkpointer, TrainingProgressCallback()]reduce_lr = ReduceLROnPlateau(monitor='val_accuracy', factor=0.9, patience=10, verbose=0, mode='auto',min_delta=0.000001,cooldown=0, min_lr=0)callback.append(reduce_lr)# 训练模型并计算评分history = model.fit(data_train, label_train, epochs=num, batch_size=5, shuffle=True, validation_split=0.1,verbose=1, callbacks=callback)scores = model.evaluate(data_test, label_test, verbose=0)print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))result.append(scores[1] * 100)time_E = time.time()print("costTime:", time_E - time_S, 's')print(result)result_mean.append(np.mean(result))print("均值是:%.4f" % np.mean(result))result_std_y.append(np.std(result))print("标准差(有偏)是:%.4f" % np.std(result))result_std_w.append(np.std(result, ddof=1))print("标准差(无偏)是:%.4f" % np.std(result, ddof=1))
  • CNN 函数中,模型结构与之前类似,但卷积层替换为自定义的 GaussianKernelConv1D 层。
  • 使用 TrainingProgressCallback 在每个 epoch 结束时输出训练进度。
  • 训练模型并评估其性能。

四、总结

相对于原代码,新的代码主要创新点包括:

  1. 引入高斯核函数和自定义卷积层:使用高斯核函数来计算输入片段与卷积核之间的相似性,增加了模型的灵活性和非线性特征提取能力。
  2. 自定义回调函数:用于在每个 epoch 结束时输出训练进度,提供更详细的训练信息,便于实时监控和调整模型。

这篇关于基于高光谱数据集的创新点实现-高斯核函数卷积神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013657

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、