数据分析-day03-pandas-dataFrame的确失值的处理

2024-05-29 09:18

本文主要是介绍数据分析-day03-pandas-dataFrame的确失值的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

判断数据是否为NaN:pd.isnull(df),pd.notnull(df) 处理方式1:删除NaN所在的行列dropna (axis=0, how='any', inplace=False) 处理方式2:填充数据,t.fillna(t.mean()),t.fiallna(t.median()),t.fillna(0)

# -*- coding: utf-8 -*-# @File    : pandas_dataframe_fixempty_demo.py
# @Date    :  2020-01-03 13:39
# @Author  : admin
import string
import pandas as pd;
import numpy as np;
d=pd.DataFrame(np.arange(0,25).reshape(5,5),index=list(string.ascii_uppercase[2:7]),columns=list(string.ascii_uppercase[-5:]))print(d)
#将第一行的2列设置为nan
d.iloc[1,1]=np.nan;
d.iloc[3,3]=np.nan;
#处理0的数据
d.iloc[4,4]=0;print(d);print("====================================将0置为nan============")
d[d==0]=np.nan;
print(d)
#判断是否为null
print("====================================pandas中判断是否为nan============")
print(pd.isnull(d))
print(pd.notnull(d))
#判断某一列不为nan的,d的w列不为nan的数据,使用到了boolean索引
print(d[pd.notnull(d["W"])])print("====================================缺失值处理方式============")
#any 满足一个即可,all 满足所有
#print("缺失值处理方式一:删除NaN所在的行列:\r\n",d.dropna(axis=0, how='any', inplace=False))
#print("缺失值处理方式一:删除NaN所在的行列:\r\n",d.dropna(axis=0, how='any', inplace=False))
#计算平均值等情况,nan是不参与计算的,但是0会
print("平均值:",d.mean())
#t.fillna(0) 填充数据
#print("缺失值处理方式二:填充数据:\r\n",d.fillna(d.mean()));
#按指定行和列,填充缺失值
d["Y"]=d["Y"].fillna(d["Y"].mean())
print("缺失值处理方式二:填充数据:\r\n",d);print(d["Z"].mean())

 

这篇关于数据分析-day03-pandas-dataFrame的确失值的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013253

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口