内存泄漏面面谈

2024-05-29 04:20
文章标签 内存 泄漏 面谈

本文主要是介绍内存泄漏面面谈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

主要介绍了内存泄漏的关注点是对象,对内存问题进行了分类并且确定本文关注点是内存泄漏,15种内存泄漏判断方式,hprof文件的用法和分析过程,以及memory profiler工具一些基本概念,最后提到了如何触发内存泄漏问题

内存泄漏的关注点——对象占据的内存

  • 本该回收的对象,无法被垃圾处理器回收;
  • 程序不再使用的对象,无法被垃圾处理器回收;
  • 在页面生命周期销毁后,页面持有、创建过的对象无法被垃圾处理器回收;
  • 在任务(线程、Service、广播)结束后,任务持有、创建过的对象无法被垃圾处理器回收

Android内存问题概述

内存抖动的表现形式:

  1. 忽高忽低,锯齿状

内存泄漏的表现形式:

  1. 页面或任务已经结束,相关的对象仍然被GC root索引,导致垃圾回收器无法回收,内存片段仍然存在

内存溢出的表现形式:

  1. App可用内存已到达系统规定的上限,如X型号手机规定单个App最大可分配内存为196mb
  2. 系统能为App分配的内存不足,系统可分配内存已经到达上限,如系统可用只有1mb,app需要20mb

Android中内存泄漏的判断方式

判断一个对象是否无法被回收,最佳的判断方式是定义清楚这个对象预期的生命周期,通常对象是随着页面、任务的生命周期产生和消亡的,Android中可以借此机制判断是否存在泄漏现象:
PS:“是否存在于hporf文件里”,是笔者用于等价替换原文“未被回收”的字样

  1. Activity:通过查看Activity#mDestroyed属性来判断Activity是否已经销毁,如果为true,表明该Activity已经被标记为销毁状态,此时hprof文件中若仍然存在此Activity,则表明这个Activity占据的内存处于泄漏状态;
  2. Fragment:通过Fragment#mFragmentManager属性来判断该Fragment是否处于无用状态,如果mFragmentManager为空,且hprof文件中若仍然存在此Fragment,则表明Fragment占据的内存处于泄漏状态;
  3. View:通过un wrapper#mContext获得Activity,如果Activity不为空,则按照判断Activity的方式判断Activity是否泄漏
  4. ContextWrapper:通过unwrapper ContextWrapper获得Activity,如果Activity不为空,则按照判断Activity的方式判断Activity是否泄漏
  5. Dialog,通过判断mDecor是否为空。mDecor为空,表明Dialog处于不被引用的状态,mDecor仍然存在在hporf里且为空,则表明Dialog泄漏了
  6. MessageQueue:通过判断MessageQueue#mQuitting或mQuiting是否退出,如果该值是true且未被回收,则认为是泄漏。
  7. ViewRootImpl:通过ViewRootImpl是否为空来判断,为空表明处于无用状态,为空且未被回收则被认为是泄漏
  8. Window:通过Window#mDestroyed来判断window是否处于无用状态,mDestroyed为true且未被回收,则认为是泄漏
  9. Toast:拿到mTN,通过mTN#mView是否为空来判断当前Toast是否已经hide,如果mView为空,表明Toast已经hide,此时Toast未被回收则认为是泄漏
  10. Editor:Editor是用于TextView处理editable text的辅助类,通过ditor#mTextView为空来判断Ediator是否处于无用状态;如果mTextView为空且未被回收则认为Editor泄漏了
    内存泄漏的典型 场景
  11. 非静态内部类、匿名内部类持有外部类对象的引用:常见的如Listener、CallBack、Handler、Dialog
  12. 非静态的Handler,持有Activity,Message持有Handler,Message被MessageQueue持有,MessageQueue持久存在,导致Activity不会被释放
  13. 资源对象未关闭:数据库连接、Cursor、IO流使用完后未close
  14. 属性动画:未及时使用cancel关闭;Animator持续存在,导致Animator持有的Activity、Fragment、View泄漏(Animator#updateListener一般都是匿名内部类,匿名内部类的问题参考场景1)
  15. 逻辑问题:广播监听后未及时解注册;

Hprof文件

Hprof文件导出

  • 通过调用Debug.dumpHprofData(String filePath)方法来生成hprof文件
  • 通过执行shell命令adb shell am dumpheap pid /data/local/tmp/x.hprof来生成指定进程的hprof文件到目标目录

Heap分区:

  1. app heap:当前App在堆中占据的内存
  2. image heap:系统启动镜像,包括启动期间预加载的类
  3. zygote heap:所有App的父进程,所有App共享zygote的内存空间,zygote预加载了许多资源和代码,供所有App读取

Instance View:

  1. depth:从gc root到当前对象的引用链最短深度。被gc root引用到的对象不会被回收。
  2. 个人收获:depath = 0,表示不被gc root引用,即会被垃圾回收器回收。
  3. 个人收获:常见gc root有5种——局部变量、Activity threads、静态变量、JNI引用、类加载器
  4. native size:native对象占据的内存大小
  5. shallow size:对象本身占用的内存,何为对象本身?不包括它引用的其他实例
  6. 个人收获:shallow size = 类定义+ 父类变量所占空间大小 + 类成员变量所占空间 + [ alignment]
  7. 类定义:固定为8Byte
  8. 父类变量所占空间大小:当前类继承了其他类的成员变量,显然这些变量是占用空间的
  9. 自身变量:当前类的成员变量,如果是基本数据类型,则按基本类型计算;如果是引用数据类型,则固定为4byte,当前类仅持有变量名,
  10. alignment:指位数对齐,目的是让shallow zie的值为8的倍数,如某个类A,前三项计算结果未15byte,则shallo size为了达到8的倍数,会设置一个alignment值,凑够16byte。
  11. retained size:Retained Size是指, 当实例A被回收时, 可以同时被回收的实例的Shallow Size之和

Instance View易混淆概念:

shallow size:
Shallow Size是指实例自身占用的内存, 可以理解为保存该’数据结构’需要多少内存, 注意不包括它引用的其他实例
retained size:
实例A的Retained Size是指, 当实例A被回收时, 可以同时被回收的实例的Shallow Size之和
在这里插入图片描述
图中A, B, C, D四个实例, 为了方便计算, 我们假设所有实例的Shallow Size都是1kb
删除D实例:垃圾回收期会移除D实例;D实例的Retained Size=Shallow Size=1kb
删除C实例:垃圾回收器会移除C和D实例;C实例的Retained Size = C实例的Shallow Size + D实例的Shallow Size = 2kb
删除B实例:垃圾回收器会移除B实例,因为C仍然被A引用,所以C不会被移除,同理D也不会被移除;B实例的Retained Size=Shallow Size=1kb
删除A实例:垃圾回收器会移除B、C、D实例;A实例的Retained Size=4kb

怎么从prof文件内分析内存泄漏?

熟能生巧——memory profiler

实时预览功能区:

在这里插入图片描述

Hprof文件预览区:

在这里插入图片描述

怎么触发泄漏

  1. 旋转屏幕
    在不同的 activity 状态下,先将设备从竖屏旋转为横屏,再将其旋转回来,这样反复旋转多次。旋转设备经常会使应用泄漏 Activity、Context 或 View 对象,因为系统会重新创建 Activity,而如果应用在其他地方保持对这些对象其中一个的引用,系统将无法对其进行垃圾回收。
  2. 切换App至前台
    在不同的 Activity 状态下,在应用与其他应用之间切换(导航到主屏幕,然后返回到您的应用)。
  3. 断开后链接网络
  4. 锁屏后亮屏
  5. 频繁操作
    1. 频繁点击按钮,如编辑用户信息,点击保存按钮,触发保存业务
    2. 频繁进入页面,如重复进入-退出某个页面
    3. 频繁刷新页面,如重复下拉加载更多

这篇关于内存泄漏面面谈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1012628

相关文章

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C