形态学操作+实例分析(第六天)

2024-05-28 20:18

本文主要是介绍形态学操作+实例分析(第六天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

形态学概念介绍

形态学现在学完基本的几个了,但我还是不知道什么是形态学!原理其实就是和“卷积”在图像处理中的应用一样,就是一个“内核”遍历图像之后进行处理,内核的不同使得处理得到的图像效果也是不同的。下面介绍几种形态学滤波原理你就懂了:

注->RGB:0-255,0代表黑色,255代表白色

腐蚀:腐蚀的顾名思义就是一个东西变黑变坏变烂了,那么简单的理解就是把大于0的像素都都变得接近0就行了啊!

         那对应的图像处理:

膨胀:一个人膨胀了的样子怎样的?变得越来越耀眼、越来越明亮!那么对应的像素就是像素<255的就越来越接近255啊。

        那对应的图像处理:

开运算:从名字记忆是图像打开,既然是打开那就是最后的结果是膨胀-------------------->先腐蚀后膨胀

闭运算:和开运算相对,从名字记忆是图像关闭,既然是打开那就是最后的结果是腐蚀----->先膨胀后腐蚀

形态学梯度:梯度就是一个阶梯的长度,对应于图像那就是像素的差值,膨胀—原图、原图—腐蚀、膨胀—腐蚀、X/Y等方向的

顶帽:不解释了---->原图—开运算

黑帽:------------>原图—闭运算

---实例分析---

注意点:形态学滤波一般运用在二值化的图像上,对于那些彩色的图像运用不明显(用过之后很难看),看了很多书本的介绍都是随便找个例子,这是在课程中看到的,感觉按照下面的步骤学习形态学真的很简单而且实用!

例一:腐蚀的作用 

原图如下,去除图片上的小白点。

用内核大小3X3进行的图片:小的白点已经没有了,但是稍微大点的杂点还是没去除!

 这是实用15X15的内核进行的图片:图片的白点完全去除了。

这是不是完成了我们的要求了呢?仔细的看会发现,我们想要的大白色区域变小了,这是什么原因呢?

从我们上面的原理分析可以得知:腐蚀会把目标区域给变小的,请看下面的图片->>>红色区域是内核,

一号区域->黑色

二号区域->白色

三号区域->黑色

二号区域->黑色

五号区域->黑色

所以图片缩小的区域就是内核的大小,每个边都会缩小!

 在想一下,如果我们用膨胀处理经过腐蚀的图片会怎么样?由上面的分析可以很快得到结论,就是恢复我们目标区域的原始尺寸

    看下面的效果图:

 

 代码比较简单,就是几行API,但是如何运用,为什么这么运用,这才是关键:

 1 int main(int argc,char**argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     Mat output_image;9     Mat kernel = getStructuringElement(MORPH_RECT,Size(15,15));
10     erode(input_image,output_image,kernel);
11     dilate(output_image, output_image,kernel);
12     imshow("Destinate image",output_image);
13     waitKey(0);
14     return 0;
15 }

例二:提取行和列

    要求提取其中的行线段-->>

 经过处理的线段图片:

 

这里没给其他的特殊照片,看代码直接改一下就可以了。

注意点: getStructuringElement()获得内核的一些参数->核大小、核形状、核锚点等。其中控制核的大小可以滤波不同的噪点:

我要滤去下面的三个大噪点,保留上面的大白色区域,其实滤波的核定义成红色的大小就可以了,不一定是正方形,矩形就可以了。

int main(int argc,char*=*argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     Mat output_image;9     Mat kernel = getStructuringElement(MORPH_RECT,Size(input_image.cols/30,1));//这个input_image.cols/30,是定义核的长度是图片长度的三十分之一,如果直                                                           接给定一个数200也可以,但是你不知道200在图像上是多大啊。
10     erode(input_image,output_image,kernel);
11     dilate(output_image, output_image,kernel);
12     imshow("Destinate image",output_image);
13     waitKey(0);
14     return 0;
15 }

 例三:简单的提取字母

       目的是提取图片中的字母

 
灰度化:

 阈值化:

 形态学滤波:

取反之后:

 1 int main(int argc,char**argv)2 {3     Mat input_image = imread("1.jpg");4     if (input_image.data==NULL) {5         return -1; cout << "can't open image.../";6     }7     imshow("Sourse image", input_image);8     cvtColor(input_image,input_image,CV_RGB2GRAY);9     imshow("Sourse1 image", input_image);
10     //adaptiveThreshold(input_image,input_image,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY_INV,171,0);
11     threshold(input_image,input_image,15,255,THRESH_BINARY);
12     imshow("Sourse2 image", input_image);
13     Mat output_image;
14     Mat kernel = getStructuringElement(MORPH_RECT,Size(3,3));
15      erode(input_image,output_image,kernel);
16     dilate(output_image, output_image,kernel);
17     imshow("Destinate image",output_image);
18     bitwise_not(output_image,output_image);
19     imshow("Destinate2 image", output_image);
20     Mat my_kernel = (Mat_<uchar>(3, 3) << 0, -1, 0, 5, -1, 0, -1, 0);
21     filter2D(output_image,output_image,output_image.depth(),my_kernel);//加强显示
22     imshow("Destinate3 image", output_image);
23     waitKey(0);
24     return 0;
25 }

 例四:稍微困难的提取字母

                这个图像对我来说有点麻烦的,形态学滤波不行的,而且形态学操作之后留下很多噪点。。。。。

形态学操作之后:

轮廓检测去除噪点:

霍夫变换去除粗实线:

这个图的小噪点用上面的步骤可以去除,这个就没再继续了

上代码:

 1 Mat input_image = imread("2.jpg");2     if (input_image.data==NULL) {3         return -1; cout << "can't open image.../";4     }5     imshow("Sourse image", input_image);6     cvtColor(input_image,input_image,CV_RGB2GRAY);7     //adaptiveThreshold(input_image,input_image,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY_INV,171,0);8     threshold(input_image,input_image,0,255,THRESH_BINARY|THRESH_OTSU);9     //-----------------------去除细实线------------------------//
10     Mat output_image;
11     Mat kernel1 = getStructuringElement(MORPH_RECT,Size(3,3));
12     morphologyEx(input_image, input_image, MORPH_CLOSE, kernel1);
13     bitwise_not(input_image, input_image);
14     output_image = input_image.clone();
15     imshow("DeleteThick image", input_image);
16     //----------------------去除形态学不能去除的噪点----------------------//
17     vector<vector<Point> > contours;
18     vector<Vec4i> hierarchy;
19     findContours(output_image, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);
20     Mat contours_image = Mat::zeros(input_image.size(), input_image.type());
21     for (size_t i = 0; i < contours.size(); i++)
22     {
23         double Area = contourArea(contours[i]);
24         if (Area > 50) continue;
25         drawContours(contours_image, contours, static_cast<int>(i),Scalar(255,255,255),1);
26     }
27     input_image = input_image - contours_image;
28     morphologyEx(input_image, input_image, MORPH_OPEN, kernel1);
29     imshow("contours image", input_image);
30     //------------------去除粗实线--------------------//
31     vector<Vec4i> lines;
32     HoughLinesP(input_image,lines,1,CV_PI/180,100,0,200); 
33     Mat line_image = Mat::zeros(input_image.size(), input_image.type());
34     for (size_t i = 0; i < lines.size(); i++)
35     {
36         line(line_image, Point(lines[i][0], lines[i][1]),
37             Point(lines[i][2], lines[i][3]), Scalar(255, 255, 255), 1, 8);
38     }
39     bitwise_not(input_image, input_image);
40     input_image = line_image + input_image;
41     morphologyEx(input_image, input_image, MORPH_CLOSE, kernel1);
42     imshow("Last image", input_image);

这篇关于形态学操作+实例分析(第六天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011584

相关文章

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

MySQL 临时表与复制表操作全流程案例

《MySQL临时表与复制表操作全流程案例》本文介绍MySQL临时表与复制表的区别与使用,涵盖生命周期、存储机制、操作限制、创建方法及常见问题,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随小... 目录一、mysql 临时表(一)核心特性拓展(二)操作全流程案例1. 复杂查询中的临时表应用2. 临时

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

Java Stream流以及常用方法操作实例

《JavaStream流以及常用方法操作实例》Stream是对Java中集合的一种增强方式,使用它可以将集合的处理过程变得更加简洁、高效和易读,:本文主要介绍JavaStream流以及常用方法... 目录一、Stream流是什么?二、stream的操作2.1、stream流创建2.2、stream的使用2.