数据集005:螺丝螺母目标检测数据集(含数据集下载链接)

2024-05-28 16:20

本文主要是介绍数据集005:螺丝螺母目标检测数据集(含数据集下载链接),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集简介

背景干净的目标检测数据集。
里面仅仅包含螺丝和螺母两种类别的目标,背景为干净的培养皿。图片数量约420张,train.txt 文件描述每个图片中的目标,label_list 文件描述类别

另附一个验证集合,有10张图片,eval.txt 描述图片中目标,格式和 train.txt 相同

部分代码

"""
训练常基于dark-net的YOLOv3网络,目标检测
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
os.environ["FLAGS_fraction_of_gpu_memory_to_use"] = '0.82'
import uuid
import numpy as np
import time
import six
import math
import random
import paddle
import paddle.fluid as fluid
import logging
import xml.etree.ElementTree
import codecs
import jsonfrom paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from PIL import Image, ImageEnhance, ImageDrawlogger = None
train_parameters = {"data_dir": "data/data6045","train_list": "train.txt","eval_list": "eval.txt","class_dim": -1,"label_dict": {},"num_dict": {},"image_count": -1,"continue_train": True,     # 是否加载前一次的训练参数,接着训练"pretrained": False,"pretrained_model_dir": "./pretrained-model","save_model_dir": "./yolo-model","model_prefix": "yolo-v3","freeze_dir": "freeze_model","use_tiny": True,          # 是否使用 裁剪 tiny 模型"max_box_num": 20,          # 一幅图上最多有多少个目标"num_epochs": 1,"train_batch_size": 8,      # 对于完整 yolov3,每一批的训练样本不能太多,内存会炸掉;如果使用 tiny,可以适当大一些"use_gpu": True,"yolo_cfg": {"input_size": [3, 448, 448],    # 原版的边长大小为608,为了提高训练速度和预测速度,此处压缩为448"anchors": [7, 10, 12, 22, 24, 17, 22, 45, 46, 33, 43, 88, 85, 66, 115, 146, 275, 240],"anchor_mask": [[6, 7, 8], [3, 4, 5], [0, 1, 2]]},"yolo_tiny_cfg": {"input_size": [3, 256, 256],"anchors": [6, 8, 13, 15, 22, 34, 48, 50, 81, 100, 205, 191],"anchor_mask": [[3, 4, 5], [0, 1, 2]]},"ignore_thresh": 0.7,"mean_rgb": [127.5, 127.5, 127.5],"mode": "train","multi_data_reader_count": 4,"apply_distort": True,"nms_top_k": 300,"nms_pos_k": 300,"valid_thresh": 0.01,"nms_thresh": 0.45,"image_distort_strategy": {"expand_prob": 0.5,"expand_max_ratio": 4,"hue_prob": 0.5,"hue_delta": 18,"contrast_prob": 0.5,"contrast_delta": 0.5,"saturation_prob": 0.5,"saturation_delta": 0.5,"brightness_prob": 0.5,"brightness_delta": 0.125},"sgd_strategy": {"learning_rate": 0.002,"lr_epochs": [30, 50, 65],"lr_decay": [1, 0.5, 0.25, 0.1]},"early_stop": {"sample_frequency": 50,"successive_limit": 3,"min_loss": 2.5,"min_curr_map": 0.84}
}def init_train_parameters():"""初始化训练参数,主要是初始化图片数量,类别数:return:"""file_list = os.path.join(train_parameters['data_dir'], train_parameters['train_list'])label_list = os.path.join(train_parameters['data_dir'], "label_list")index = 0with codecs.open(label_list, encoding='utf-8') as flist:lines = [line.strip() for line in flist]for line in lines:train_parameters['num_dict'][index] = line.strip()train_parameters['label_dict'][line.strip()] = indexindex += 1train_parameters['class_dim'] = indexwith codecs.open(file_list, encoding='utf-8') as flist:lines = [line.strip() for line in flist]train_parameters['image_count'] = len(lines)

数据集链接:螺丝螺母目标检测数据集(430张)

这篇关于数据集005:螺丝螺母目标检测数据集(含数据集下载链接)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011072

相关文章

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元