LeetCode - 贪心算法 (Greedy Algorithm) 集合 [分配问题、区间问题]

2024-05-27 23:44

本文主要是介绍LeetCode - 贪心算法 (Greedy Algorithm) 集合 [分配问题、区间问题],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/139242199

饼干

贪心算法,是在每一步选择中,都采取当前状态下,最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法,在解决各种问题时被广泛应用,包括数组操作、字符串处理、图论等。

贪心算法包括:分配问题区间问题

  1. 455. 分发饼干 - 分配问题
  2. 135. 分发糖果 - 分配问题
  3. 605. 种花问题 - 分配问题
  4. 406. 根据身高重建队列 - 分配问题
  5. 435. 无重叠区间 - 区间问题
  6. 452. 用最少数量的箭引爆气球 - 区间问题
  7. 763. 划分字母区间 - 区间问题
  8. 121. 买卖股票的最佳时机 - 区间问题

1. 分配问题

455. 分发饼干 - 分配问题:

class Solution:def findContentChildren(self, g: List[int], s: List[int]) -> int:"""时间复杂度,来自于排序,O(mlogm + nlogn)空间复杂度,类似,O(logm + logn)"""g = sorted(g)  # 排序s = sorted(s)n, m = len(g), len(s)  # 序列数量i, j = 0, 0while i < n and j < m:  # 全部遍历if g[i] <= s[j]:  # 判断是否吃饱i += 1  # 孩子满足条件j += 1  # 饼干满足条件return i

135. 分发糖果 - 分配问题:

class Solution:def candy(self, ratings: List[int]) -> int:"""时间复杂度 O(n),空间复杂度 O(n)"""n = len(ratings)  # 序列长度res = [1] * n  # 每个孩子至少1个糖果# 正序遍历for i in range(1, n):if ratings[i] > ratings[i-1]:res[i] = res[i-1] + 1  # 要是后面+1# print(f"[Info] res: {res}")# 逆序遍历for i in range(n-1, 0, -1):if ratings[i-1] > ratings[i]:# 逆序需要最大值res[i-1] = max(res[i-1], res[i]+1)  # print(f"[Info] res: {res}")return sum(res)

605. 种花问题 - 分配问题:

class Solution:def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:"""时间复杂度 O(n),空间复杂度 O(1)"""res = 0  # 种花数量m = len(flowerbed)  # 花坛长度for i in range(m):# 前面是0,中间是0,最后是0,注意边界if (i==0 or flowerbed[i-1] == 0) and (flowerbed[i] == 0) and (i==m-1 or flowerbed[i+1]==0):res += 1flowerbed[i] = 1return res >= n

406. 根据身高重建队列 - 分配问题,读懂题,根据 -p[0] 和 p[1] 排序,再进行插入,根据 p[1],进行插入。

class Solution:def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]:"""插入之前的位置时间O(n^2),空间O(logn)"""# p[0] 从大到小排序,再次根据 p[1] 从小到大排序people.sort(key=lambda x: (-x[0], x[1]))  # print(f"[Info] people: {people}")n = len(people)  # 人数res = []for p in people:# print(f"[Info] res: {res}")# 根据 p 值的第2位 [正好有k个人],进行排序插入res.insert(p[1], p)  # 在p[1]前一个位置插入return res

2. 区间问题

435. 无重叠区间 - 区间问题

class Solution:def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:"""时间复杂度 O(nlogn) 空间复杂度 O(logn)"""# 根据 end 值排序intervals = sorted(intervals, key=lambda x: x[1])# print(f"[Info] intervals: {intervals}")n = len(intervals)res = 0prev = intervals[0][1]  # 第1个值的末尾值for i in range(1, n):  # 从第2个值开始if intervals[i][0] < prev:  # 前值小于后值res += 1  # 相交else:prev = intervals[i][1]  # 遍历下一个return res

452. 用最少数量的箭引爆气球 - 区间问题,435 题的变换

class Solution:def findMinArrowShots(self, points: List[List[int]]) -> int:"""区间类型题,与 435 类似时间复杂度 O(nlogn),空间复杂度 O(logn)"""# 尾部排序points = sorted(points, key=lambda x: x[1])n = len(points)prev = points[0][1]  # 前值res = 0for i in range(1, n):if prev >= points[i][0]:res += 1  # 重叠值,即1箭射中2个else:prev = points[i][1]return n - res  # 最终值是差值

763. 划分字母区间 - 区间问题,记录字母最后出现的位置,与之前最大位置比较。

class Solution:def partitionLabels(self, s: str) -> List[int]:"""时间复杂度 O(n),空间复杂度 O(len(s))"""n=len(s)  # 序列长度last=[0]*26  # 字母数量# 遍历获取最后出现的位置for i in range(n):j=ord(s[i])-ord('a')last[j]=max(i,last[j])  # 字母最后出现的位置start,end=0,0res=[]for i in range(n):j=ord(s[i])-ord('a')# 当前字母j最后出现的位置last[j],与之前end,取最大值end=max(end,last[j])if end==i:  # end如果等于ires.append(end-start+1) # 序列长度start=end+1  # 起始位置移动return res

121. 买卖股票的最佳时机 - 区间问题

class Solution:def maxProfit(self, prices: List[int]) -> int:"""时间复杂度 O(n),空间复杂度 O(1)"""n=len(prices)  # 全部数量res=0  # 结果for i in range(1,n):# 累加区间价格res+=max(0,prices[i]-prices[i-1])return res

这篇关于LeetCode - 贪心算法 (Greedy Algorithm) 集合 [分配问题、区间问题]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008934

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原