1990-2021 年全球油棕面积和种植年份数据集

2024-05-27 20:12

本文主要是介绍1990-2021 年全球油棕面积和种植年份数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

该数据集利用 2016 年至 2021 年的哨兵-1 号数据,以 10 米的分辨率提供了油棕种植园的全球综合地图,包括工业用地和小农地块。此外,该数据集还包括根据 Landsat-5、-7 和-8 图像得出的 1990 年至 2021 年 30 米空间分辨率的种植年份估计值。该数据集旨在通过提供有关全球油棕种植园范围和树龄的最新详细信息,为环境监测和政策讨论提供支持。您可在此阅读预印本。

您可以在这里找到该数据储存库,它提供了有关全球油棕种植园的全面数据,包括分辨率为 10 米的 2021 年全球油棕种植范围图层和分辨率为 30 米的 1990 年至 2021 年油棕种植年份图层。范围层是利用应用于哨兵-1 数据的卷积神经网络生成的,可识别工业种植园和小农种植园。种植年份层是利用大地遥感卫星的时间序列来探测早期油棕生长阶段的。

数据集的主要发现显示,测绘的油棕种植园总面积为 2,398 万公顷(Mha),其中工业油棕种植园面积为 1,666 ± 0.25 万公顷,小农油棕种植园面积为 759 ± 0.29 万公顷。数据的准确性很高,生产者和用户对工业种植园的准确性分别为 91.9 ± 3.4% 和 91.8 ± 1.0%,对小农的准确性分别为 72.7 ± 1.3% 和 75.7 ± 2.5%。种植园的平均树龄为 14.1 年,其中 628 万公顷的树龄超过 20 年,这表明未来十年内有很大的补种需求。

数据集说明

数据层

1.Grid_OilPalm2016-2021


格式:形状文件
格式: Shapefile划定检测到油棕的 609 个 100 x 100 千米网格单元。
用例:为全球油棕种植园的分布提供空间参考,对制图和分析任务至关重要。


2.GlobalOilPalm_OP-extent全球油棕榈树分布图


格式:Geotiff (栅格瓦片)
说明:包含 609 个栅格图块:包含 609 个栅格图块(每个 100x100 公里),显示深度学习分类在 10 米空间分辨率下的结果。
类别:
[0] 非油棕的其他土地覆盖。
[1] 工业油棕种植园。
[2] 小农油棕种植园。
使用案例:有助于对油棕分布进行详细的空间分析,并区分不同类型的种植园。


3.全球油棕榈树分布图


格式:Geotiff (栅格图块)
说明:包含 609 个栅格图块:包括 609 个栅格图块(每个 100x100 千米),以 30 米的空间分辨率描述油棕榈树种植园的建立年份。
用例:可对油棕榈树种植园的扩展进行时间分析,并监测种植园随时间变化的树龄。


4.Validation_points_GlobalOP2016-2021


格式: Shapefile形状文件
描述: 包含 17,812 个点:包含 17,812 个点,用于验证全球油棕榈树范围和树龄图层。每个点包括
等级":通过目视判读分配(类别值与范围图层相同)。
OP2016-2021" 和 "OP2019":分别为本数据集和 2019 年全球油棕图层(Descals et al.
类别:
[0] 非油棕的其他土地覆盖。
[1] 工业油棕种植园。
[2] 小农油棕种植园。
用例:对于验证和评估油棕榈树范围和树龄数据集的准确性至关重要。


可视化 

油棕范围和种植年份数据可通过以下网站的网络地图进行查询:1990-2021 年全球油棕种植年。用户可通过该工具查看 Landsat 时间序列,并查看油棕种植园的历史卫星图像。

代码

/*
GlobalOilPalm_YoP_2021:建立油棕榈树种植园的年份 grid_oilpalm: 划定检测到油棕榈的 609 个 100 x 100 千米网格单元 globaloilpalm_extent2021: 10 米空间分辨率的深度学习分类
- 类别:**- [0] 非油棕的其他土地覆盖。- [1] 工业油棕种植园。- [2] 小农油棕种植园。
验证: 包含 17,812 个点,用于验证全球油棕范围和树龄图层。每个点包括- 类别": 通过目视判读分配(类别值与范围图层相同)。- OP2016-2021' 和 'OP2019': 分别为本数据集和 2019 年全球油棕图层(Descals et al.- 类别:**- [0] 非油棕的其他土地覆盖。- [1] 工业油棕种植园。- [2] 小农油棕种植园。*/
var grid_oilpalm = ee.FeatureCollection('projects/sat-io/open-datasets/global-oil-palm/Grid_OilPalm_2021_v1-1');
var globaloilpalm_extent = ee.ImageCollection('projects/sat-io/open-datasets/global-oil-palm/GlobalOilPalm_extent_2021');
var globaloilpalm_yop_2021 = ee.ImageCollection("projects/sat-io/open-datasets/global-oil-palm/GlobalOilPalm_YoP_2021");
var validation = ee.FeatureCollection("projects/sat-io/open-datasets/global-oil-palm/Validation_points_GlobalOP2016-2021_v1-1")

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:/global-landuse-landcover/GLOBAL-OIL-PALM-1990-2021-APP

APP链接

 Global oil palm planting year 1990 2021

结果

引用

Descals, A., Gaveau, D. L. A., Wich, S., Szantoi, Z., and Meijaard, E.: Global mapping of oil palm planting year from 1990 to 2021 Earth Syst. Sci Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-157, in review, 2024.

https://essd.copernicus.org/preprints/essd-2024-157/essd-2024-157.pdf

Descals, A. (2024). Global oil palm extent and planting year from 1990 to 2021 (v1.1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11034131

许可

This product is licensed under a Creative Commons Attribution 4.0 International license.

Curated in GEE by: Descals et al 2024 and Samapriya Roy

Keywords: oil palm, planting year, global crop mapping, remote sensing, deep learning, Sentinel-1

Last updated in GEE: 2024-04-28

网址推荐

0代码在线构建地图应用

https://invite.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

这篇关于1990-2021 年全球油棕面积和种植年份数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008476

相关文章

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock