机器学习笔记——K近邻算法、手写数字识别

2024-05-27 19:28

本文主要是介绍机器学习笔记——K近邻算法、手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KNN算法

“物以类聚,人以群分”相似的数据往往拥有相同的类别
其大概原理就是一个样本归到哪一类,当前样本需要归到频次最高的哪个类去
也就是说有一个待分类的样本,然后跟他周围的k个样本来看,k中哪一个类最多,待分类的样本就是哪一个。
那就以手写数字识别为例吧

import matplotlib.pyplot as plt
import numpy as np
import os
#%%
# 读入mnist数据集
m_x = np.loadtxt('./data/mnist_x', delimiter=' ')
m_y = np.loadtxt('./data/mnist_y')
#%%
# 数据集可视化
data = np.reshape(np.array(m_x[0], dtype=int), [28, 28])
plt.figure()
plt.imshow(data, cmap='gray')
#%%
# 将数据集分为训练集和测试集
ratio = 0.8
split = int(len(m_x) * ratio)
# 打乱数据
np.random.seed(0)
idx = np.random.permutation(np.arange(len(m_x))) #随机排序
m_x = m_x[idx]
m_y = m_y[idx]
x_train, x_test = m_x[:split], m_x[split:]
y_train, y_test = m_y[:split], m_y[split:]
#%%
#定义距离函数
def distance(x,y):return np.sqrt(np.sum(np.square(x-y)))#%%
#定义KNN模型
class KNN:def __init__(self,k,label_num):self.k=kself.label_num=label_num #类别的数量def fit(self,x_train,y_train):self.x_train=x_trainself.y_train=y_traindef get_knn_indices(self,x): #获得距离目标样本最近的k个点的标签,a来做self_x.traindis=list(map(lambda a:distance(a,x),self.x_train))knn_indices=np.argsort(dis) #对距离排序,在选择k个出来knn_indices=knn_indices[:self.k]#标签return knn_indicesdef get_label(self,x):#计算k个点中,样本的标签数量是多少knn_indices=self.get_knn_indices(x)label_statistic=np.zeros(shape=[self.label_num])for index in knn_indices:label=int(self.y_train[index])label_statistic[label]+=1return np.argmax(label_statistic) #找出最大的类别def predict(self,x_test):predicted_test_labels=np.zeros(shape=[len(x_test)],dtype=int)for i,x in enumerate(x_test): #枚举predicted_test_labels[i]=self.get_label(x)return predicted_test_labels#%%
for k in range(1,10):knn=KNN(k,label_num=10)knn.fit(x_train,y_train)predicted_labels=knn.predict(x_test)accuracy=np.mean(predicted_labels==y_test)print(f'k的取值为{k},预测准确率为{accuracy*100:.lf}%')

这篇关于机器学习笔记——K近邻算法、手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008379

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

基于Python实现数字限制在指定范围内的五种方式

《基于Python实现数字限制在指定范围内的五种方式》在编程中,数字范围限制是常见需求,无论是游戏开发中的角色属性值、金融计算中的利率调整,还是传感器数据处理中的异常值过滤,都需要将数字控制在合理范围... 目录引言一、基础条件判断法二、数学运算巧解法三、装饰器模式法四、自定义类封装法五、NumPy数组处理

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.