图片数据增强-resize(不同插值)、各种模糊

2024-05-27 18:44

本文主要是介绍图片数据增强-resize(不同插值)、各种模糊,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

各种不同的模糊处理

import os
import cv2def apply_blur_to_images(input_folder_path, output_folder_path):# 遍历文件夹下的所有文件for filename in os.listdir(input_folder_path):# 检查文件类型是否为图片if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):# 构建输入图片的完整路径input_image_path = os.path.join(input_folder_path, filename)# 读取图片image = cv2.imread(input_image_path)# 根据不同的模糊方法进行处理for blur_method in ['gaussian', 'mean', 'median', 'bilateral']:# 创建对应的模糊文件夹output_blur_folder_path = os.path.join(output_folder_path, blur_method)os.makedirs(output_blur_folder_path, exist_ok=True)# 根据选择的模糊方法进行处理if blur_method == 'mean':blurred_image = cv2.blur(image, (15, 15))elif blur_method == 'median':blurred_image = cv2.medianBlur(image, 15)elif blur_method == 'bilateral':blurred_image = cv2.bilateralFilter(image, 15, 75, 75)else:blurred_image = cv2.GaussianBlur(image, (15, 15), 0)# 构建输出图片的完整路径output_image_path = os.path.join(output_blur_folder_path, filename)# 保存模糊处理后的图片cv2.imwrite(output_image_path, blurred_image)if __name__ == '__main__':# 文件夹不要有中文!!!!!!!!!# 输入文件夹路径input_folder_path = './data'# 输出文件夹路径output_folder_path = './output'# 调用函数apply_blur_to_images(input_folder_path, output_folder_path)

resize 下采样

import os
import cv2def reduce_resolution(input_folder_path, output_folder_path, scale_factor, interpolation):# 遍历文件夹下的所有文件for filename in os.listdir(input_folder_path):# 检查文件类型是否为图片if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):# 构建输入图片的完整路径input_image_path = os.path.join(input_folder_path, filename)# 读取图片image = cv2.imread(input_image_path)# 计算目标宽度和高度target_width = int(image.shape[1] * scale_factor)target_height = int(image.shape[0] * scale_factor)# 调整图像尺寸resized_image = cv2.resize(image, (target_width, target_height), interpolation=interpolation)# 构建输出图片的完整路径interpolation_name = get_interpolation_name(interpolation)output_folder = os.path.join(output_folder_path, interpolation_name)os.makedirs(output_folder, exist_ok=True)  # 创建输出文件夹(如果不存在)output_image_path = os.path.join(output_folder, filename)# 保存调整尺寸后的图片cv2.imwrite(output_image_path, resized_image)def get_interpolation_name(interpolation):if interpolation == cv2.INTER_NEAREST:return 'INTER_NEAREST'elif interpolation == cv2.INTER_LINEAR:return 'INTER_LINEAR'elif interpolation == cv2.INTER_CUBIC:return 'INTER_CUBIC'elif interpolation == cv2.INTER_LANCZOS4:return 'INTER_LANCZOS4'else:return 'UNKNOWN'if __name__ == '__main__':# 文件夹不要有中文!!!!!!!!!# 输入文件夹路径input_folder_path = './data'# 输出文件夹路径output_folder_path = './output'# 比例系数scale_factor = 0.5  # 调整为原始图像的一半# 插值方法列表interpolations = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]# 遍历插值方法for interpolation in interpolations:# 调用函数进行图像尺寸调整reduce_resolution(input_folder_path, output_folder_path, scale_factor, interpolation)

遍历文件夹,结果以名字命令,方便区分
在这里插入图片描述

这篇关于图片数据增强-resize(不同插值)、各种模糊的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008285

相关文章

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

Java如何根据文件名前缀自动分组图片文件

《Java如何根据文件名前缀自动分组图片文件》一大堆文件(比如图片)堆在一个目录下,它们的命名规则遵循一定的格式,混在一起很难管理,所以本文小编就和大家介绍一下如何使用Java根据文件名前缀自动分组图... 目录需求背景分析思路实现代码输出结果知识扩展需求一大堆文件(比如图片)堆在一个目录下,它们的命名规

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

将图片导入Python的turtle库的详细过程

《将图片导入Python的turtle库的详细过程》在Python编程的世界里,turtle库以其简单易用、图形化交互的特点,深受初学者喜爱,随着项目的复杂度增加,仅仅依靠线条和颜色来绘制图形可能已经... 目录开篇引言正文剖析1. 理解基础:Turtle库的工作原理2. 图片格式与支持3. 实现步骤详解第

Spring Validation中9个数据校验工具使用指南

《SpringValidation中9个数据校验工具使用指南》SpringValidation作为Spring生态系统的重要组成部分,提供了一套强大而灵活的数据校验机制,本文给大家介绍了Spring... 目录1. Bean Validation基础注解常用注解示例在控制器中应用2. 自定义约束验证器定义自

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

在React聊天应用中实现图片上传功能

《在React聊天应用中实现图片上传功能》在现代聊天应用中,除了文字和表情,图片分享也是一个重要的功能,本文将详细介绍如何在基于React的聊天应用中实现图片上传和预览功能,感兴趣的小伙伴跟着小编一起... 目录技术栈实现步骤1. 消息组件改造2. 图片预览组件3. 聊天输入组件改造功能特点使用说明注意事项

SQL常用操作精华之复制表、跨库查询、删除重复数据

《SQL常用操作精华之复制表、跨库查询、删除重复数据》:本文主要介绍SQL常用操作精华之复制表、跨库查询、删除重复数据,这些SQL操作涵盖了数据库开发中最常用的技术点,包括表操作、数据查询、数据管... 目录SQL常用操作精华总结表结构与数据操作高级查询技巧SQL常用操作精华总结表结构与数据操作复制表结

Redis中的数据一致性问题以及解决方案

《Redis中的数据一致性问题以及解决方案》:本文主要介绍Redis中的数据一致性问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Redis 数据一致性问题的产生1. 单节点环境的一致性问题2. 网络分区和宕机3. 并发写入导致的脏数据4. 持