【Python数据分析】基于自回归积分滑动平均模型的疫情分析报告 附完整python代码

本文主要是介绍【Python数据分析】基于自回归积分滑动平均模型的疫情分析报告 附完整python代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

资源地址:Python数据分析大作业 2000+字 图文分析文档 疫情分析+完整python代码
在这里插入图片描述

数据分析

数据来自法国疫情数据

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

资源地址:Python数据分析大作业 2000+字 图文分析文档 疫情分析+完整python代码

代码详解

image-20240407220302833

image-20240407220441078

image-20240407220508782

完整代码文件

主要是对时间序列数据进行分析和预测。让我们逐步解释每一部分:

  1. 导入必要的库

    from math import *
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
    from pylab import *
    
    • math: 导入数学函数库,但实际上在后续的代码中没有用到。
    • numpypandasmatplotlib.pyplot: 分别是用于数值计算、数据处理和可视化的常用库。
    • statsmodels.graphics.tsaplots.plot_acfstatsmodels.graphics.tsaplots.plot_pacf:用于绘制自相关性和偏自相关性图。
    • pylab: 导入了 *,所以其下所有函数都可直接使用。
  2. 设置中文字体和负号显示

    plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置中文字体为黑体
    plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
    
  3. 读取数据

    cas_confirmes = pd.read_csv('cas_confirmes.csv', index_col=0)
    hospitalises = pd.read_csv('hospitalises.csv', index_col=0)
    

    从文件中读取了两个时间序列数据,分别是患病确诊人数和住院人数。

  4. 数据处理

    cas_confirmes.fillna(np.nanmean(cas_confirmes) + 30 * np.random.random(), inplace=True)
    hospitalises.fillna(np.nanmean(hospitalises), inplace=True)
    

    使用每列的均值填充缺失值。

  5. 数据可视化

    cas_confirmes.plot() 
    plt.title('Change in the number of cases')
    plt.show()
    hospitalises.plot()
    plt.title('Changes in the number of people in the hospital')
    plt.show()
    

    绘制了患病确诊人数和住院人数的变化趋势图。

  6. 自相关性分析

    plot_acf(cas_confirmes)
    plt.title('The autocorrelation of the number of patients')
    plot_pacf(cas_confirmes)
    plt.title('Partial autocorrelation of the number of patients')
    plt.show()plot_acf(hospitalises)
    plt.title('Autocorrelation graph of the number of people in the hospital')
    plot_pacf(hospitalises)
    plt.title('Partial autocorrelation graph of the number of people in the hospital')
    plt.show()
    

    绘制了患病确诊人数和住院人数的自相关性和偏自相关性图。

  7. ARIMA 模型定阶

    train_results = sm.tsa.arma_order_select_ic(cas_confirmes['2020-03-19':'2021-06-09'], ic=['bic'], trend='nc', max_ar=5, max_ma=5)
    print('BIC for the number of patients', train_results.bic_min_order)
    

    使用 BIC 准则确定 ARIMA 模型的阶数。

  8. 构建 ARIMA 模型

    model = ARIMA(cas_confirmes['2020-03-19':'2021-05-09'], order=(2,0,1))
    results_comfirm = model.fit();
    

    使用确定的阶数构建 ARIMA 模型,并对患病确诊人数和住院人数分别进行建模。

  9. 模型诊断

    print('The white noise test result of the diseased difference sequence was:', acorr_ljungbox(resid1.values.squeeze(), lags=1))
    print('The white noise test result of hospitalization difference sequence is:', acorr_ljungbox(resid2.values.squeeze(), lags=1))
    

    对模型的残差进行自相关性分析,检验残差序列是否为白噪声。

  10. 模型预测

    predict_comfirm=results_comfirm.forecast(30)
    

    使用训练好的 ARIMA 模型对未来一段时间内的患病确诊人数和住院人数进行预测。

  11. 可视化预测结果

    plt.plot(list(range(1,418)),predict_sunspots_comfirm,label='predict comfirmed')
    plt.plot(smooth_comfirm.loc['2020-03-18':'2021-06-09'],label='true comfirmed')
    plt.plot(list(range(417,447)),predict_comfirm[0],'g',label='future predict')
    plt.title('Actual and predicted disease graphs')
    plt.legend()
    

    绘制预测结果和真实数据的对比图。

完整代码文件&2000+图文分析报告

这篇关于【Python数据分析】基于自回归积分滑动平均模型的疫情分析报告 附完整python代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007568

相关文章

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

SpringBoot整合OpenFeign的完整指南

《SpringBoot整合OpenFeign的完整指南》OpenFeign是由Netflix开发的一个声明式Web服务客户端,它使得编写HTTP客户端变得更加简单,本文为大家介绍了SpringBoot... 目录什么是OpenFeign环境准备创建 Spring Boot 项目添加依赖启用 OpenFeig

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技