源码-Spark中Worker源码分析(一)

2024-05-27 12:38
文章标签 分析 源码 worker spark

本文主要是介绍源码-Spark中Worker源码分析(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Worker作为对于Spark集群的健壮运行起着举足轻重的作用,作为Master的奴隶,每15s向Master告诉自己还活着,一旦主人(Master》有了任务(Application),立马交给属于它的奴隶们(Workers),那么奴隶们就会数数自己有多少家当(比如内存、核数),量力而行地交给主人完成的任务,如果奴隶不量力而行在执行任务过程中不幸死了的话,作为主人的Master只会等待60s,如果奴隶在这生死攸关的紧要关头不理睬主人,那么主人只能认为它死了,那么就会把它抛弃了。下面,我们一起了解一下Worker究竟有哪些不为人知的故事。

1.家当(静态属性)


我们只列出一些重要的属性:
1.一个守护单线程的调度器用于在特殊的时间发送消息,执行的任务包括:向Master注册Worker信息、发送心跳信息、定期清理任务等。
  private val forwordMessageScheduler =
    ThreadUtils.newDaemonSingleThreadScheduledExecutor("worker-forward-message-scheduler")
2.一个独立的线程用于清理工作空间,执行任务:定期清理执行过程中创建的本地文件。
  private val cleanupThreadExecutor = ExecutionContext.fromExecutorService(
    ThreadUtils.newDaemonSingleThreadExecutor("worker-cleanup-thread"))
3.shuffle服务默认没有开启除非用户自己配置,之所以会开启外部的Shuffle服务,是为了避免Executor进程任务过重,导致不能为其他的Executor提供Shuffle数据,影响任务的执行。比如,如果使用YARN模式时,可以在yarn-site.xml文件中配置及其端口号,从而在NodeManger上开启Shuffle服务,减轻Executor的负担。
  private val shuffleService = new ExternalShuffleService(conf, securityMgr)
4.一个masters的线程池。因为master注册Worker是一个阻塞操作,所以这个线程池必须能同时创建"masterRpcAddresses.size"大小的线程,这样我们就能将worker注册到所有的master上。
private val registerMasterThreadPool = new ThreadPoolExecutor(
    0,
    masterRpcAddresses.size, // Make sure we can register with all masters at the same time
    60L, TimeUnit.SECONDS,
    new SynchronousQueue[Runnable](),
    ThreadUtils.namedThreadFactory("worker-register-master-threadpool"))

2.技能(方法)


由于Worker本质上是一个RpcEndpoint,所以我们按照它的声明周期进行介绍。
1.构造函数就是Worker默认的构造器
2.onStart方法


<code>
//worker的启动
  override def onStart() {
    assert(!registered)
    logInfo("Starting Spark worker %s:%d with %d cores, %s RAM".format(
      host, port, cores, Utils.megabytesToString(memory)))
    logInfo(s"Running Spark version ${org.apache.spark.SPARK_VERSION}")
    logInfo("Spark home: " + sparkHome)
    createWorkDir()
    //如果用户已经配置外部的Shuffle,那么就启动该服务
    shuffleService.startIfEnabled()
    //该WebUI只仅限于Standalone模式下
    webUi = new WorkerWebUI(this, workDir, webUiPort)
    webUi.bind()
    //将worker注册到master上,详情如下(1)
    registerWithMaster()
    metricsSystem.registerSource(workerSource)
    metricsSystem.start()
    //metricsSystem启动后,将worker的metrics的servlet handler添加到web ui
    metricsSystem.getServletHandlers.foreach(webUi.attachHandler)
  }
</code>



(1)将worker注册到master上的registerWithMaster()代码如下所示:



<code>
private def registerWithMaster() {
    //如果work与master可能多次失去连接,所以不要尝试太多次的注册
    registrationRetryTimer match {
      case None =>
        registered = false
        //将woker注册到所有的master上返回一个Future的数组,详情如下(2)
        registerMasterFutures = tryRegisterAllMasters()
        connectionAttemptCount = 0
        //一个单线程不定时向master发送注册信息
        registrationRetryTimer = Some(forwordMessageScheduler.scheduleAtFixedRate(
          new Runnable {
            override def run(): Unit = Utils.tryLogNonFatalError {
              Option(self).foreach(_.send(ReregisterWithMaster))
            }
          },
          INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,
          INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,
          TimeUnit.SECONDS))
      case Some(_) =>
        logInfo("Not spawning another attempt to register with the master, since there is an" +
          " attempt scheduled already.")
    }
  }
</code>



(2)tryRegisterAllMasters代码如下:



<code>
//将worker注册到所有的master上面
  private def tryRegisterAllMasters(): Array[JFuture[_]] = {
    masterRpcAddresses.map { masterAddress =>
      registerMasterThreadPool.submit(new Runnable {
        override def run(): Unit = {
          try {
            logInfo("Connecting to master " + masterAddress + "...")
            //在Client的Rpc中根据master的systemname、address、endpointname返回一个master的远程引用
            val masterEndpoint =
              rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)
            //调用master的远程引用将worker注册到master上
            masterEndpoint.send(RegisterWorker(
              workerId, host, port, self, cores, memory, webUi.boundPort, publicAddress))
          } catch {
            case ie: InterruptedException => // Cancelled
            case NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)
          }
        }
      })
    }
  }
</code>



3.onStop()方法,把关于Worker的一切都停止掉,比如线程、executors、drivers、shuffleService等



<code>
override def onStop() {
    cleanupThreadExecutor.shutdownNow()
    metricsSystem.report()
    cancelLastRegistrationRetry()
    forwordMessageScheduler.shutdownNow()
    registerMasterThreadPool.shutdownNow()
    executors.values.foreach(_.kill())
    drivers.values.foreach(_.kill())
    shuffleService.stop()
    webUi.stop()
    metricsSystem.stop()
  }
</code>



还有一个很重要的receive方法,都放到这儿可能有点拥挤,留到下一篇吧。

这篇关于源码-Spark中Worker源码分析(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007502

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串