嵌入式学习-驱动开发前奏-lesson2-内存管理与进程管理子系统

本文主要是介绍嵌入式学习-驱动开发前奏-lesson2-内存管理与进程管理子系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内存管理子系统

在内核相关一课中,已经介绍过,linux内核一共有7个子系统:
1.SCI
2.Pm
3.MM
4.Arch
5.Vfs
6.Network stack
7.DD

在以后的驱动学习章节中,主要是与 MM PM VFS 这三个相关。
在本章节中则主要讲解MM(内存管理子系统)

1)内存管理模型

这里写图片描述
根据上面的图,可以得知,内存的管理主要是做两个方面的工作:
1:物理内存分配
2:虚拟地址与物理地址的映射

2)地址的映射

这里写图片描述
上面这幅图是地址空间映射图,将其分为三个部分:
1:虚拟地址空间分布
2:虚拟地址转化为物理地址
3:物理内存分配

1.虚拟地址空间分布

根据上图可知,4G的虚拟地址空间又可分为3G的用户空间和1G的内核空间。

1G的内核空间又可分为4部分:
①、直接映射区,最大空间为896MB (896MB以下的内存称之为低端内存,以上则称之为高端内存) 然后减去3G 就可以直接得到物理地址
②、vmalloc区(既可以访问低端区域,也可以访问高端区域)
③、永久内核映射(固定访问高端内存)
④、固定映射的线性地址(和一些特殊的寄存器有关)

2.虚拟地址向物理地址转化

主要是上图第二部分完成的,将其简化为下图
这里写图片描述

具体过程:
1.cr3基地址加上虚拟地址的22–32位指向页目录的某一个地址(cr3指向页目录的基地址)
2.指向页目录的那个地址又指向页表的基地址,然后该地址加上虚拟地址的12–21位指向页表的某一个地址,也就是物理页的基地址
3.物理页的基地址加上虚拟地址的0–11,就得到物理存储单元的地址

3.物理内存的分配

这里写图片描述
linux使用虚拟地址管理方式,只有真正访问物理地址,才分配物理内存

上图,当使用malloc或者vmalloc时,会分配一个虚拟地址,并没有真正访问到物理内存,当需要使用物理内存的时候,会产生一个 请页异常 然后从 空闲页框 中 ,查看是否有空闲的物理内存,当有空闲的时候,机会分配一个物理内存,从而建立起访问关系。
但是当使用kmalloc的时候,slab管理器会直接将虚拟地址和物理地址建立关系。

进程管理子系统

一、进程相关概念

1)进程与程序

程序
存放在磁盘上的一系列代码和数据的可执行映像,是一个静止的实体
进程
是一个执行中的程序,它是动态的实体

2)进程四要素

  1. 有一段程序供其执行。这段程序不一定是某个进程所专有,可以与其他进程共用。
  2. 有进程专用的内核空间堆栈。
  3. 在内核中有一个task_struct数据结构,即通常所说的“进程控制块(pcb)”。有了这个数据结构,进程才能成为内核调度的一个基本单位接受内核的调度。
  4. 有独立的用户空间。
    这里写图片描述

3) Linux进程状态

这里写图片描述

linux进程的状态可以将其范围上面三个部分,就绪、执行、阻塞。这是一种典型的三态图,将其进一步细分,
这里写图片描述

1.TASK_RUNNING(就绪、执行)
进程正在被CPU执行,或者已经准备就绪,随时可以执行。当一个进程刚被创建时,就处于TASK_RUNNING状态。
2.TASK_INTERRUPTIBLE(属于三态中的阻塞态)
处于等待中的进程,待等待条件为真时被唤醒,也可以被信号或者中断唤醒。
3. TASK_UNINTERRUPTIBLE
处于等待中的进程,待资源有效时唤醒,但不可以由其它进程通过信号(signal)或中断唤醒。
4. TASK_KILLABLE
Linux2.6.25新引入的进程睡眠状态,原理类似于TASK_UNINTERRUPTIBLE,但是可以被致命信号(SIGKILL)唤醒。
5. TASK_TRACED
正处于被调试状态的进程。
6. TASK_DEAD
进程退出时(调用do_exit),所处的状态。

4) Linux进程描述

在Linux内核代码中,线程、进程都使用结构task_struct(sched.h)来表示,它包含了大量描述进程/线程的信息,其中比较重要的有:
pid_t pid; //进程号
long state; //进程状态
int prio; //进程优先级

在内核源代码sched.h中有关于此结构体的详细描述

二、进程调度

所谓的进程调度就是从就绪的进程中选出最适合的一个来执行。
主要分为:
1、调度策略
2、调度时机
3、调度步骤

1) 调度策略

SCHED_NORMAL(SCHED_OTHER):普通的分时进程
SCHED_FIFO :先入先出的实时进程
SCHED_RR:时间片轮转的实时进程(间隔一定时间,不管是否执行完,换下一个进程运行同样的时间)
SCHED_BATCH:批处理进程
SCHED_IDLE: 只在系统空闲时才能够被调度执行的进程

2 )调度时机

什么时候发生调度?
即schedule()函数什么时候被调用?
schedule()函数在linux内核中完成调度过程

1主动式调度

在内核中直接调用schedule()。当进程需要等待资源等而暂时停止运行时,会把自己的状态置于挂起(睡眠),并主动请求调度,让出CPU。
范例:
1. current->state = TASK_INTERRUPTIBLE; (处于阻塞态)
2. schedule();

2被动式调度

被动式调度又名:抢占式调度。分为:用户态抢占(Linux2.4、Linux2.6)和内核态抢占(Linux2.6)。

2.1用户态抢占
用户抢占发生在:
从系统调用返回用户空间。
从中断处理程序返回用户空间。
内核即将返回用户空间的时候,如果need_resched标志被设置,会导致schedule()被调用,即发生用户抢占。
**当某个进程耗尽它的时间片时,会设置need_resched标志
**当一个优先级更高的进程进入可执行状态的时候,也会设置need_resched标志。

2.2内核态抢占
用户态抢占缺陷
进程/线程一旦运行到内核态,就可以一直执行,直到它主动放弃或时间片耗尽为止。这样会导致一些非常紧急的进程或线程将长时间得不到运行,降低整个系统的实时性。

改进方式
允许系统在内核态也支持抢占,更高优先级的进程/线程可以抢占正在内核态运行的低优先级进程/线程。

内核抢占可能发生在:
**中断处理程序完成,返回内核空间之前。
**当内核代码再一次具有可抢占性的时候,如解锁及使能软中断等。

在支持内核抢占的系统中,某些特例下是不允许抢占的:
** 内核正在运行中断处理。
** 内核正在进行中断上下文的Bottom Half(中断的底半部)处理。硬件中断返回前会执行软中断,此时仍然处于中断上下文中。
** 进程正持有spinlock自旋锁、writelock/readlock读写锁等,当持有这些锁时,不应该被抢占,否则由于抢占将可能导致其他进程长期得不到锁,而让系统处于死锁状态。
** 内核正在执行调度程序Scheduler。抢占的原因就是为了进行新的调度,没有理由将调度程序抢占掉再运行调度程序。

2.3 抢占计数
为保证Linux内核在以上情况下不会被抢占,抢占式内核使用了一个变量preempt_count,称为内核抢占计数。这一变量被设置在进程的thread_info结构中。每当内核要进入以上几种状态时,变量preempt_count就加1,指示内核不允许抢占。每当内核从以上几种状态退出时,变量preempt_count就减1,同时进行可抢占的判断与调度。

3) 调度步骤

Schedule函数工作流程如下:
1. 清理当前运行中的进程;
2. 选择下一个要运行的进程;
3. 设置新进程的运行环境;
4. 进程上下文切换 。

菜鸟一枚,如有错误,多多指教。。。

这篇关于嵌入式学习-驱动开发前奏-lesson2-内存管理与进程管理子系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007134

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

基于Java开发一个极简版敏感词检测工具

《基于Java开发一个极简版敏感词检测工具》这篇文章主要为大家详细介绍了如何基于Java开发一个极简版敏感词检测工具,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录你是否还在为敏感词检测头疼一、极简版Java敏感词检测工具的3大核心优势1.1 优势1:DFA算法驱动,效率提升10