高效的大型语言模型适应方法:提升基础性的解决方案

本文主要是介绍高效的大型语言模型适应方法:提升基础性的解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

谷歌的AI搜索工具建议用户“吃石头”对健康有益,这一搞笑的回答引发了众人哗然。为了提高LLMs(大型语言模型)的可靠性,我们推出了AGREE,一种基于学习的框架,旨在使LLMs能够在回答中提供准确的引用,从而提高用户的信任度。

近年来,LLMs在多跳推理、生成计划和使用工具和API等各种能力上展示了显著进步,显示出在许多下游应用中的巨大潜力。然而,在现实世界中部署时,LLMs的可靠性有时会因“幻觉”问题而受损,即模型生成了看似合理但实际上并不准确的信息。当LLMs被要求回答涉及广泛世界知识的开放性问题时,“幻觉”问题更为常见,这在需要高度准确性的领域,如新闻报道和教育内容中尤其具有风险。

为了应对LLMs的“幻觉”问题,基础性研究致力于追溯其声明到可靠的来源。这样的系统不仅能提供连贯且有用的回答,还能通过引用外部知识来支持其声明。

在我们即将在NAACL 2024上展示的论文“提升基础性的大型语言模型适应方法”中,我们介绍了一个新的LLM基础性框架,称为AGREE(Adaptation for GRounding EnhancEment),它使LLMs能够自我基础化其回答中的声明,并提供精确的引用,增强用户信任并扩展其潜在应用。在五个数据集上的全面实验表明,AGREE比以前的基于提示或事后引用的方法在基础性方面有显著提升,通常能实现超过30%的相对改进。

改进基础性的整体方法

以前改善基础性的研究主要遵循两种显著的范式。一种是使用额外的自然语言推理(NLI)模型事后添加引用,这种方法严重依赖于LLM嵌入中的知识,无法很好地扩展到超出该范围的事实。另一种常见的基础性方法是利用LLMs的指令跟随和上下文学习能力。这种方法要求LLMs仅通过少量演示提示来学习基础性,实际效果并不理想。

我们的新框架AGREE采用整体方法,结合基于学习的适应和测试时适应(TTA),以改善LLMs的基础性和引用生成。不同于以前的基于提示的方法,AGREE对LLMs进行微调,使其能够自我基础化其回答中的声明并提供准确的引用。这种在预训练LLMs之上进行的微调需要良好的基础性回答(带有引用),为此我们引入了一种方法,可以从未标记的查询中自动构建这样的数据。经过微调的LLMs的自我基础化能力进一步赋予了它们TTA能力,能够迭代地改进其回答。

微调LLMs以实现自我基础化

在训练期间,AGREE从未标记的查询中收集合成数据,然后使用这些数据微调基础LLM,使其能够自我基础化其声明。针对一个未标记的查询,我们首先使用检索模型从可靠来源(如维基百科)检索相关段落。然后,我们向基础LLM呈现检索到的段落并采样一组初始回答(不带引用)。接下来,我们使用一个NLI模型(在我们的例子中,是Google TrueNLI模型的变体),来判断一个声明是否由段落支持,帮助为初始回答添加引用。对于初始回答中的每个句子,我们使用NLI模型找到可以支持该句子的段落,并相应地添加引用。对于没有支持段落的句子,我们不会添加引用。

测试时适应

在测试时,AGREE引入了一种迭代推理策略,使LLM能够根据其自我生成的引用主动寻找更多信息。针对一个查询,我们首先使用检索模型获取初始段落集。然后,我们迭代执行以下步骤:1)在每次迭代中,适应后的LLM生成包含对段落集引用的回答,并找到没有引用的任何不支持声明。2)接着,我们根据引用信息主动向LLM提供更多信息——如果存在不支持声明,我们会使用这些声明检索更多可靠来源的信息,否则,我们会包括使用查询检索到的更多未见段落,以获取更完整的信息。

实验

我们进行了全面的实验,展示AGREE在有无TTA情况下的有效性。我们在五个数据集上对其进行了评估,包括两个域内数据集(NQ和StrategyQA)和三个域外数据集(ASQA、QAMPARI和一个内部QA数据集“Enterprise”)以测试我们框架的泛化能力。我们将AGREE应用于适应两个LLMs,并将其与一个竞争性的基于提示的基线(ICLCite)和一个事后引用的基线(PostCite)进行比较。

主要实验结果

实验结果表明AGREE在文本语料库中生成的回答具有更好的基础性(通过引用召回率衡量),并为其回答提供了准确的引用(通过引用精确度衡量)。它在各个数据集上都显著优于所选择的基线。

  1. 微调对于优越的基础性非常有效。
  2. 改进可以泛化。
  3. TTA提高了基础性和回答正确性。

AGREE不仅在域内数据集上表现出色,在域外数据集上的零样本设定下也能有效泛化,这表明我们的框架具有显著的泛化优势。

这篇关于高效的大型语言模型适应方法:提升基础性的解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006755

相关文章

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma