【Python】 XGBoost vs LightGBM:两大梯度提升框架的对比

2024-05-27 03:52

本文主要是介绍【Python】 XGBoost vs LightGBM:两大梯度提升框架的对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


原谅把你带走的雨天
在渐渐模糊的窗前
每个人最后都要说再见
原谅被你带走的永远
微笑着容易过一天
也许是我已经 老了一点
那些日子你会不会舍不得
思念就像关不紧的门
空气里有幸福的灰尘
否则为何闭上眼睛的时候
又全都想起了
谁都别说
让我一个人躲一躲
你的承诺
我竟然没怀疑过
反反覆覆
要不是当初深深深爱过
我试着恨你
却想起你的笑容
                     🎵 陈楚生/单依纯《原谅》


在机器学习领域,XGBoost(Extreme Gradient Boosting)和LightGBM(Light Gradient Boosting Machine)是两种非常流行且高效的梯度提升框架。它们在各种数据科学竞赛和实际应用中表现出色,尤其是在处理大规模数据和高维数据时。本文将对XGBoost和LightGBM进行详细对比,帮助你理解它们的优劣和适用场景。

什么是XGBoost和LightGBM?

  • XGBoost:由Tianqi Chen等人开发,是一种基于梯度提升决策树(GBDT)的开源框架。XGBoost因其高效、准确和可扩展性而受到广泛欢迎。

  • LightGBM:由微软开发,是另一种基于GBDT的框架。LightGBM以其快速训练速度和低内存占用著称,特别适用于大数据场景。

主要特点对比

  1. 速度和性能
    训练速度:LightGBM通常比XGBoost更快。这是因为LightGBM采用了基于直方图的算法,减少了数据扫描次数,提高了效率。
    内存使用:LightGBM的内存占用通常较低,因为它通过直方图方法和特征捆绑技术减少了内存使用。
  2. 算法实现
    XGBoost:采用按层生长的决策树(level-wise),即每次分裂所有节点。这种方法可以更好地控制树的结构,但在大数据集上效率较低。
    LightGBM:采用按叶子生长的决策树(leaf-wise),即每次选择增益最大的叶子节点进行分裂。这种方法可以生成更深的树,提高模型的准确性,但可能导致过拟合,需要通过设置最大深度或叶子节点数来控制。
  3. 特征处理
    类别特征:LightGBM能够直接处理类别特征,而XGBoost需要对类别特征进行预处理,如one-hot编码。
    缺失值处理:XGBoost和LightGBM都能够自动处理缺失值,但LightGBM在处理大规模数据时表现更好。
  4. 并行和分布式计算
    并行计算:XGBoost和LightGBM都支持并行计算,但LightGBM在大规模数据集上的分布式计算能力更强。
    分布式训练:LightGBM能够更好地支持分布式训练,适用于超大规模数据集。
    实际应用对比

数据准备

假设我们有一个客户流失预测的数据集,包含客户特征和是否流失的标注(流失为1,未流失为0)。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, classification_report# 加载数据
df = pd.read_csv('customer_churn.csv')# 特征和目标变量
X = df.drop('churn', axis=1)
y = df['churn']# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
XGBoost模型训练和评估
python
复制代码
import xgboost as xgb# 转换数据格式为DMatrix
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)# 设置XGBoost参数
params = {'booster': 'gbtree','objective': 'binary:logistic','eval_metric': 'logloss','eta': 0.1,'max_depth': 6,'scale_pos_weight': 80,'subsample': 0.8,'colsample_bytree': 0.8,'seed': 42
}# 训练模型
num_round = 100
bst = xgb.train(params, dtrain, num_round)# 模型预测
y_pred_prob = bst.predict(dtest)
y_pred = (y_pred_prob > 0.5).astype(int)# 评估模型
print(f"XGBoost Accuracy: {accuracy_score(y_test, y_pred)}")
print("XGBoost Classification Report:")
print(classification_report(y_test, y_pred))

LightGBM模型训练和评估

import lightgbm as lgb# 创建LightGBM数据集
train_data = lgb.Dataset(X_train, label=y_train)
test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)# 设置LightGBM参数
params = {'boosting_type': 'gbdt','objective': 'binary','metric': 'binary_logloss','learning_rate': 0.1,'num_leaves': 31,'max_depth': -1,'min_data_in_leaf': 20,'feature_fraction': 0.8,'bagging_fraction': 0.8,'bagging_freq': 5,'lambda_l1': 0.1,'lambda_l2': 0.1,'scale_pos_weight': 80,'verbose': -1
}# 训练模型
num_round = 100
bst = lgb.train(params, train_data, num_round, valid_sets=[test_data], early_stopping_rounds=10)# 模型预测
y_pred_prob = bst.predict(X_test, num_iteration=bst.best_iteration)
y_pred = (y_pred_prob > 0.5).astype(int)# 评估模型
print(f"LightGBM Accuracy: {accuracy_score(y_test, y_pred)}")
print("LightGBM Classification Report:")
print(classification_report(y_test, y_pred))

总结

XGBoost和LightGBM都是强大的梯度提升框架,各有优劣:

  • XGBoost:适用于各种数据集,算法成熟稳定,参数调节细腻。
  • LightGBM:在大规模数据和高维数据上表现更佳,训练速度更快,内存占用更低,适合需要快速迭代的大数据场景。

选择合适的框架取决于具体的应用场景和数据特征。在实际应用中,可以尝试两种框架并进行对比,以选择性能最佳的模型。希望本文能帮助你更好地理解和使用XGBoost和LightGBM,为你的机器学习项目提供有力支持。

这篇关于【Python】 XGBoost vs LightGBM:两大梯度提升框架的对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1006446

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库